forked from swordest/mec_drl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_lib.py
397 lines (311 loc) · 14.3 KB
/
ddpg_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import tensorflow as tf
import numpy as np
import tflearn
from collections import deque
import random
import ipdb as pdb
# setting for hidden layers
Layer1 = 400
Layer2 = 300
# ===========================
# Actor and Critic DNNs
# ===========================
class ActorNetwork(object):
"""
Input to the network is the state, output is the action
under a deterministic policy.
The output layer activation is a tanh to keep the action
between -action_bound and action_bound
"""
def __init__(self, sess, state_dim, action_dim, action_bound, learning_rate, tau, batch_size, user_id=''):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.action_bound = action_bound
self.learning_rate = learning_rate
self.tau = tau
self.batch_size = batch_size
self.user_id = user_id
start_idx = len(tf.global_variables())
start_idx_train = len(tf.trainable_variables())
# Actor Network
self.inputs, self.out, self.scaled_out = self.create_actor_network()
self.network_params = tf.trainable_variables()[start_idx_train:]
end_idx_train = len(tf.trainable_variables())
# Target Network
self.target_inputs, self.target_out, self.target_scaled_out = self.create_actor_network()
self.target_network_params = tf.trainable_variables()[end_idx_train:]
self.params = tf.global_variables()[start_idx:]
# Op for periodically updating target network with online network
# weights
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) +
tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# This gradient will be provided by the critic network
self.action_gradient = tf.placeholder(tf.float32, [None, self.a_dim])
# # Combine the gradients here
# self.unnormalized_actor_gradients = tf.gradients(
# self.scaled_out, self.network_params, -self.action_gradient)
# self.actor_gradients = list(map(lambda x: tf.div(x, self.batch_size), self.unnormalized_actor_gradients))
# Combine the gradients here
grads = tf.gradients(
self.scaled_out, self.network_params, -self.action_gradient)
# the gradient shoudl not be None
self.unnormalized_actor_gradients = [grad if grad is not None else tf.zeros_like(var)
for var, grad in zip(self.network_params, grads)]
self.actor_gradients = list(map(lambda x: tf.div(x, self.batch_size), self.unnormalized_actor_gradients))
# Optimization Op
self.optimize = tf.train.AdamOptimizer(self.learning_rate).\
apply_gradients(zip(self.actor_gradients, self.network_params))
self.num_trainable_vars = len(
self.network_params) + len(self.target_network_params)
def create_actor_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim], name="input_"+str(self.user_id))
net = tflearn.fully_connected(inputs, Layer1)
net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.relu(net)
net = tflearn.fully_connected(net, Layer2)
net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.relu(net)
# Final layer weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
out = tflearn.fully_connected(
net, self.a_dim, activation='sigmoid', weights_init=w_init)
# Scale output to -action_bound to action_bound
scaled_out = tf.multiply(out, self.action_bound, name="output_"+str(self.user_id))
return inputs, out, scaled_out
def train(self, inputs, a_gradient):
self.sess.run(self.optimize, feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient
})
def predict(self, inputs):
return self.sess.run(self.scaled_out, feed_dict={
self.inputs: inputs
})
def predict_target(self, inputs):
return self.sess.run(self.target_scaled_out, feed_dict={
self.target_inputs: inputs
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)
def init_target_network(self, path):
res = np.load(path)
weights_load = np.array(res['arr_0'])
for i in range(len(weights_load)):
self.sess.run(self.params[i].assign(tf.constant(weights_load[i])))
def get_num_trainable_vars(self):
return self.num_trainable_vars
class ActorNetworkLD(object):
"""
Actor network loaded from stored models
"""
def __init__(self, sess, user_id):
self.sess = sess
self.user_id = user_id
graph = tf.get_default_graph()
self.inputs = graph.get_tensor_by_name("input_"+user_id+"/X:0")
self.scaled_out = graph.get_tensor_by_name("output_"+user_id+":0")
def predict(self, s):
return self.sess.run(self.scaled_out, feed_dict={
self.inputs: s
})
class CriticNetwork(object):
"""
Input to the network is the state and action, output is Q(s,a).
The action must be obtained from the output of the Actor network.
"""
def __init__(self, sess, state_dim, action_dim, learning_rate, tau, gamma, num_actor_vars):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.learning_rate = learning_rate
self.tau = tau
self.gamma = gamma
# Create the critic network
self.inputs, self.action, self.out = self.create_critic_network()
self.network_params = tf.trainable_variables()[num_actor_vars:]
# Target Network
self.target_inputs, self.target_action, self.target_out = self.create_critic_network()
self.target_network_params = tf.trainable_variables()[(len(self.network_params) + num_actor_vars):]
# Op for periodically updating target network with online network
# weights with regularization
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) \
+ tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# Network target (y_i)
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# Define loss and optimization Op
self.loss = tflearn.mean_square(self.predicted_q_value, self.out)
self.optimize = tf.train.AdamOptimizer(
self.learning_rate).minimize(self.loss)
# Get the gradient of the net w.r.t. the action.
# For each action in the minibatch (i.e., for each x in xs),
# this will sum up the gradients of each critic output in the minibatch
# w.r.t. that action. Each output is independent of all
# actions except for one.
self.action_grads = tf.gradients(self.out, self.action)
def create_critic_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim])
action = tflearn.input_data(shape=[None, self.a_dim])
net = tflearn.fully_connected(inputs, Layer1)
net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.relu(net)
# Add the action tensor in the 2nd hidden layer
# Use two temp layers to get the corresponding weights and biases
t1 = tflearn.fully_connected(net, Layer2)
t2 = tflearn.fully_connected(action, Layer2)
net = tflearn.activation(
tf.matmul(net, t1.W) + tf.matmul(action, t2.W) + t2.b, activation='relu')
# linear layer connected to 1 output representing Q(s,a)
# Weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
out = tflearn.fully_connected(net, 1, weights_init=w_init)
return inputs, action, out
def train(self, inputs, action, predicted_q_value):
return self.sess.run([self.out, self.optimize], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value
})
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
def predict_target(self, inputs, action):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs,
self.target_action: action
})
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)
class DeepQNetwork(object):
"""
Input to the network is the state, output is a vector of Q(s,a).
"""
def __init__(self, sess, state_dim, action_dim, learning_rate, tau, gamma, user_id):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.learning_rate = learning_rate
self.tau = tau
self.gamma = gamma
self.user_id = user_id
# Create the critic network
self.inputs, self.q_out = self.create_deep_q_network()
self.network_params = tf.trainable_variables()
# Target Network
self.target_inputs, self.target_q_out = self.create_deep_q_network()
self.target_network_params = tf.trainable_variables()[len(self.network_params):]
# Op for periodically updating target network with online network
# weights with regularization
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) \
+ tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# Network target (y_i)
self.target_Q = tf.placeholder(tf.float32, [None, self.a_dim])
# Define loss and optimization Op
self.loss = tflearn.mean_square(self.target_Q, self.q_out)
self.optimize = tf.train.AdamOptimizer(
self.learning_rate).minimize(self.loss)
def create_deep_q_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim], name="input_"+str(self.user_id))
net = tflearn.fully_connected(inputs, Layer1)
# net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.elu(net)
net = tflearn.fully_connected(net, Layer2)
# net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.elu(net)
# linear layer connected to 1 output representing Q(s,a)
# Weights are init to Uniform[-3e-3, 3e-3]
# w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
q_out = tflearn.fully_connected(net, self.a_dim, name="output_"+str(self.user_id))
return inputs, q_out
def train(self, inputs, target_Q):
return self.sess.run([self.loss, self.optimize], feed_dict={
self.inputs: inputs,
self.target_Q: target_Q
})
def predict(self, inputs):
q_out = self.sess.run(self.q_out, feed_dict={
self.inputs: inputs
})
return np.argmax(q_out, axis=1), q_out
def predict_target(self, inputs):
q_out = self.sess.run(self.target_q_out, feed_dict={
self.target_inputs: inputs
})
return np.argmax(q_out, axis=1), q_out
def update_target_network(self):
self.sess.run(self.update_target_network_params)
# Taken from https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py, which is
# based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckActionNoise:
def __init__(self, mu, sigma=0.12, theta=.15, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def __repr__(self):
return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
class GaussianNoise:
def __init__(self, sigma0=1.0, sigma1=0.0, size=[1]):
self.sigma0 = sigma0
self.sigma1 = sigma1
self.size = size
def __call__(self):
self.sigma0 *= 0.9995
self.sigma0 = np.fmax(self.sigma0, self.sigma1)
return np.random.normal(0, self.sigma0, self.size)
class ReplayBuffer(object):
def __init__(self, buffer_size, random_seed=123):
"""
The right side of the deque contains the most recent experiences
"""
self.buffer_size = buffer_size
self.count = 0
self.buffer = deque()
random.seed(random_seed)
def add(self, s, a, r, t, s2):
experience = (s, a, r, t, s2)
if self.count < self.buffer_size:
self.buffer.append(experience)
self.count += 1
else:
self.buffer.popleft()
self.buffer.append(experience)
def size(self):
return self.count
def sample_batch(self, batch_size):
batch = []
if self.count < batch_size:
batch = random.sample(self.buffer, self.count)
else:
batch = random.sample(self.buffer, batch_size)
s_batch = np.array([_[0] for _ in batch])
a_batch = np.array([_[1] for _ in batch])
r_batch = np.array([_[2] for _ in batch])
t_batch = np.array([_[3] for _ in batch])
s2_batch = np.array([_[4] for _ in batch])
return s_batch, a_batch, r_batch, t_batch, s2_batch
def clear(self):
self.buffer.clear()
self.count = 0