diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..d412c04 --- /dev/null +++ b/.gitignore @@ -0,0 +1,16 @@ +DUMMY1 +DUMMY2 +DUMMY3 +logs +__pycache__ +.ipynb_checkpoints +.*.swp + +build +*.c +monotonic_align/monotonic_align +/.vs/vits/FileContentIndex +configs/dracu_japanese_base2.json +configs/tolove_japanese_base2.json + +.idea \ No newline at end of file diff --git a/LICENSE b/LICENSE index 896e6ff..6a6c318 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2023 Saya +Copyright (c) 2021 Jaehyeon Kim Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/README.md b/README.md new file mode 100644 index 0000000..52a41e7 --- /dev/null +++ b/README.md @@ -0,0 +1,54 @@ +# How to use +(Suggestion) Python == 3.7 + +Only Japanese datasets can be used for fine-tuning in this repo. +## Clone this repository +```sh +git clone https://github.com/SayaSS/vits-finetuning.git +``` +## Install requirements +```sh +pip install -r requirements.txt +``` +## Download pre-trained model +- [G_0.pth](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/G_0.pth) +- [D_0.pth](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/D_0.pth) +- Edit "model_dir"(line 152) in utils.py +- Put pre-trained models in the "model_dir"/checkpoints + +## Create datasets +- Speaker ID should be between 0-803. +- About 50 audio-text pairs will suffice and 100-600 epochs could have quite good performance, but more data may be better. +- Resample all audio to 22050Hz, 16-bit, mono wav files. +``` +path/to/XXX.wav|speaker id|transcript +``` +- Example + +``` +dataset/001.wav|10|こんにちは。 +``` +For complete examples, please see filelists/miyu_train.txt and filelists/miyu_val.txt. + +## Preprocess +```sh +python preprocess.py --filelists path/to/filelist_train.txt path/to/filelist_val.txt +``` +Edit "training_files" and "validation_files" in configs/config.json +## Build monotonic alignment search +```sh +cd monotonic_align +python setup.py build_ext --inplace +cd .. +``` +## Train +```sh +# Mutiple speakers +python train_ms.py -c configs/config.json -m checkpoints +``` +## Inference +### Online +See [inference.ipynb](inference.ipynb) +### Offline +See [MoeGoe](https://github.com/CjangCjengh/MoeGoe) + diff --git a/attentions.py b/attentions.py new file mode 100644 index 0000000..4e0b0c1 --- /dev/null +++ b/attentions.py @@ -0,0 +1,303 @@ +import copy +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +import commons +import modules +from modules import LayerNorm + + +class Encoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert t_s == t_t, "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert t_s == t_t, "Local attention is only available for self-attention." + block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) + output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) + output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + max_relative_position = 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) + x_flat = x.view([batch, heads, length**2 + length*(length -1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/commons.py b/commons.py new file mode 100644 index 0000000..9ad0444 --- /dev/null +++ b/commons.py @@ -0,0 +1,161 @@ +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size*dilation - dilation)/2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def intersperse(lst, item): + result = [item] * (len(lst) * 2 + 1) + result[1::2] = lst + return result + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d( + length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = ( + math.log(float(max_timescale) / float(min_timescale)) / + (num_timescales - 1)) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2,3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1. / norm_type) + return total_norm diff --git a/configs/config.json b/configs/config.json new file mode 100644 index 0000000..b259b07 --- /dev/null +++ b/configs/config.json @@ -0,0 +1,55 @@ +{ + "train": { + "log_interval": 200, + "eval_interval": 1000, + "seed": 1234, + "epochs": 10000, + "learning_rate": 2e-4, + "betas": [0.8, 0.99], + "eps": 1e-9, + "batch_size": 16, + "fp16_run": true, + "lr_decay": 0.999875, + "segment_size": 8192, + "init_lr_ratio": 1, + "warmup_epochs": 0, + "c_mel": 45, + "c_kl": 1.0 + }, + "data": { + "training_files":"filelists/miyu_train.txt.cleaned", + "validation_files":"filelists/miyu_val.txt.cleaned", + "text_cleaners":["japanese_cleaners"], + "max_wav_value": 32768.0, + "sampling_rate": 22050, + "filter_length": 1024, + "hop_length": 256, + "win_length": 1024, + "n_mel_channels": 80, + "mel_fmin": 0.0, + "mel_fmax": null, + "add_blank": true, + "n_speakers": 804, + "cleaned_text": true + }, + "model": { + "inter_channels": 192, + "hidden_channels": 192, + "filter_channels": 768, + "n_heads": 2, + "n_layers": 6, + "kernel_size": 3, + "p_dropout": 0.1, + "resblock": "1", + "resblock_kernel_sizes": [3,7,11], + "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], + "upsample_rates": [8,8,2,2], + "upsample_initial_channel": 512, + "upsample_kernel_sizes": [16,16,4,4], + "n_layers_q": 3, + "use_spectral_norm": false, + "gin_channels": 256 + }, + "speakers": ["\u7279\u522b\u5468", "\u65e0\u58f0\u94c3\u9e7f", "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09", "\u4e38\u5584\u65af\u57fa", "\u5bcc\u58eb\u5947\u8ff9", "\u5c0f\u6817\u5e3d", "\u9ec4\u91d1\u8239", "\u4f0f\u7279\u52a0", "\u5927\u548c\u8d64\u9aa5", "\u5927\u6811\u5feb\u8f66", "\u8349\u4e0a\u98de", "\u83f1\u4e9a\u9a6c\u900a", "\u76ee\u767d\u9ea6\u6606", "\u795e\u9e70", "\u597d\u6b4c\u5267", "\u6210\u7530\u767d\u4ec1", "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09", "\u6c14\u69fd", "\u7231\u4e3d\u6570\u7801", "\u661f\u4e91\u5929\u7a7a", "\u7389\u85fb\u5341\u5b57", "\u7f8e\u5999\u59ff\u52bf", "\u7435\u7436\u6668\u5149", "\u6469\u8036\u91cd\u70ae", "\u66fc\u57ce\u8336\u5ea7", "\u7f8e\u6d66\u6ce2\u65c1", "\u76ee\u767d\u8d56\u6069", "\u83f1\u66d9", "\u96ea\u4e2d\u7f8e\u4eba", "\u7c73\u6d74", "\u827e\u5c3c\u65af\u98ce\u795e", "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09", "\u7231\u6155\u7ec7\u59ec", "\u7a3b\u8377\u4e00", "\u80dc\u5229\u5956\u5238", "\u7a7a\u4e2d\u795e\u5bab", "\u8363\u8fdb\u95ea\u8000", "\u771f\u673a\u4f36", "\u5ddd\u4e0a\u516c\u4e3b", "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09", "\u6a31\u82b1\u8fdb\u738b", "\u91c7\u73e0", "\u65b0\u5149\u98ce", "\u4e1c\u5546\u53d8\u9769", "\u8d85\u7ea7\u5c0f\u6d77\u6e7e", "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09", "\u8352\u6f20\u82f1\u96c4", "\u4e1c\u701b\u4f50\u6566", "\u4e2d\u5c71\u5e86\u5178", "\u6210\u7530\u5927\u8fdb", "\u897f\u91ce\u82b1", "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09", "\u9752\u7af9\u56de\u5fc6", "\u5fae\u5149\u98de\u9a79", "\u7f8e\u4e3d\u5468\u65e5", "\u5f85\u517c\u798f\u6765", "mr cb\uff08cb\u5148\u751f\uff09", "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09", "\u76ee\u767d\u591a\u4f2f", "\u4f18\u79c0\u7d20\u8d28", "\u5e1d\u738b\u5149\u8f89", "\u5f85\u517c\u8bd7\u6b4c\u5267", "\u751f\u91ce\u72c4\u675c\u65af", "\u76ee\u767d\u5584\u4fe1", "\u5927\u62d3\u592a\u9633\u795e", "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09", "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09", "\u5317\u90e8\u7384\u9a79", "\u6a31\u82b1\u5343\u4ee3\u738b", "\u5929\u72fc\u661f\u8c61\u5f81", "\u76ee\u767d\u963f\u5c14\u4e39", "\u516b\u91cd\u65e0\u654c", "\u9e64\u4e38\u521a\u5fd7", "\u76ee\u767d\u5149\u660e", "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09", "\u4e5f\u6587\u6444\u8f89", "\u5c0f\u6797\u5386\u5947", "\u5317\u6e2f\u706b\u5c71", "\u5947\u9510\u9a8f", "\u82e6\u6da9\u7cd6\u971c", "\u5c0f\u5c0f\u8695\u8327", "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09", "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09", "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09", "\u6850\u751f\u9662\u8475", "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e", "\u6a2b\u672c\u7406\u5b50", "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09", "\u7434", "\u7a7a\uff08\u7a7a\u54e5\uff09", "\u4e3d\u838e", "\u8367\uff08\u8367\u59b9\uff09", "\u82ad\u82ad\u62c9", "\u51ef\u4e9a", "\u8fea\u5362\u514b", "\u96f7\u6cfd", "\u5b89\u67cf", "\u6e29\u8fea", "\u9999\u83f1", "\u5317\u6597", "\u884c\u79cb", "\u9b48", "\u51dd\u5149", "\u53ef\u8389", "\u949f\u79bb", "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09", "\u73ed\u5c3c\u7279", "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09", "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09", "\u4e03\u4e03", "\u91cd\u4e91", "\u7518\u96e8\uff08\u6930\u7f8a\uff09", "\u963f\u8d1d\u591a", "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09", "\u83ab\u5a1c", "\u523b\u6674", "\u7802\u7cd6", "\u8f9b\u7131", "\u7f57\u838e\u8389\u4e9a", "\u80e1\u6843", "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09", "\u70df\u7eef", "\u5bb5\u5bab", "\u6258\u9a6c", "\u4f18\u83c8", "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09", "\u65e9\u67da", "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09", "\u4e94\u90ce", "\u4e5d\u6761\u88df\u7f57", "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09", "\u57c3\u6d1b\u4f0a", "\u7533\u9e64", "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09", "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09", "\u591c\u5170", "\u4e45\u5c90\u5fcd", "\u9e7f\u91ce\u82d1\u5e73\u85cf", "\u63d0\u7eb3\u91cc", "\u67ef\u83b1", "\u591a\u8389", "\u4e91\u5807", "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09", "\u6df1\u6e0a\u4f7f\u5f92", "\u59ae\u9732", "\u8d5b\u8bfa", "\u503a\u52a1\u5904\u7406\u4eba", "\u574e\u8482\u4e1d", "\u771f\u5f13\u5feb\u8f66", "\u79cb\u4eba", "\u671b\u65cf", "\u827e\u5c14\u83f2", "\u827e\u8389\u4e1d", "\u827e\u4f26", "\u963f\u6d1b\u74e6", "\u5929\u91ce", "\u5929\u76ee\u5341\u4e94", "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8", "\u5b89\u987a", "\u5b89\u897f", "\u8475", "\u9752\u6728", "\u8352\u5ddd\u5e78\u6b21", "\u8352\u8c37", "\u6709\u6cfd", "\u6d45\u5ddd", "\u9ebb\u7f8e", "\u51dd\u5149\u52a9\u624b", "\u963f\u6258", "\u7afa\u5b50", "\u767e\u8bc6", "\u767e\u95fb", "\u767e\u6653", "\u767d\u672f", "\u8d1d\u96c5\u7279\u4e3d\u5947", "\u4e3d\u5854", "\u5931\u843d\u8ff7\u8fed", "\u7f2d\u4e71\u661f\u68d8", "\u4f0a\u7538", "\u4f0f\u7279\u52a0\u5973\u5b69", "\u72c2\u70ed\u84dd\u8c03", "\u8389\u8389\u5a05", "\u841d\u838e\u8389\u5a05", "\u516b\u91cd\u6a31", "\u516b\u91cd\u971e", "\u5361\u83b2", "\u7b2c\u516d\u591c\u60f3\u66f2", "\u5361\u841d\u5c14", "\u59ec\u5b50", "\u6781\u5730\u6218\u5203", "\u5e03\u6d1b\u59ae\u5a05", "\u6b21\u751f\u94f6\u7ffc", "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f", "\u7406\u4e4b\u5f8b\u8005", "\u8ff7\u57ce\u9a87\u5154", "\u5e0c\u513f", "\u9b47\u591c\u661f\u6e0a", "\u9ed1\u5e0c\u513f", "\u5e15\u6735\u83f2\u8389\u4e1d", "\u4e0d\u706d\u661f\u951a", "\u5929\u5143\u9a91\u82f1", "\u5e7d\u5170\u9edb\u5c14", "\u6d3e\u8499bh3", "\u7231\u9171", "\u7eef\u7389\u4e38", "\u5fb7\u4e3d\u838e", "\u6708\u4e0b\u521d\u62e5", "\u6714\u591c\u89c2\u661f", "\u66ae\u5149\u9a91\u58eb", "\u683c\u857e\u4fee", "\u7559\u4e91\u501f\u98ce\u771f\u541b", "\u6885\u6bd4\u4e4c\u65af", "\u4eff\u72b9\u5927", "\u514b\u83b1\u56e0", "\u5723\u5251\u5e7d\u5170\u9edb\u5c14", "\u5996\u7cbe\u7231\u8389", "\u7279\u65af\u62c9zero", "\u82cd\u7384", "\u82e5\u6c34", "\u897f\u7433", "\u6234\u56e0\u65af\u96f7\u5e03", "\u8d1d\u62c9", "\u8d64\u9e22", "\u9547\u9b42\u6b4c", "\u6e21\u9e26", "\u4eba\u4e4b\u5f8b\u8005", "\u7231\u8389\u5e0c\u96c5", "\u5929\u7a79\u6e38\u4fa0", "\u742a\u4e9a\u5a1c", "\u7a7a\u4e4b\u5f8b\u8005", "\u85aa\u708e\u4e4b\u5f8b\u8005", "\u4e91\u58a8\u4e39\u5fc3", "\u7b26\u534e", "\u8bc6\u4e4b\u5f8b\u8005", "\u7279\u74e6\u6797", "\u7ef4\u5c14\u8587", "\u82bd\u8863", "\u96f7\u4e4b\u5f8b\u8005", "\u65ad\u7f6a\u5f71\u821e", "\u963f\u6ce2\u5c3c\u4e9a", "\u698e\u672c", "\u5384\u5c3c\u65af\u7279", "\u6076\u9f99", "\u8303\u4e8c\u7237", "\u6cd5\u62c9", "\u611a\u4eba\u4f17\u58eb\u5175", "\u611a\u4eba\u4f17\u58eb\u5175a", "\u611a\u4eba\u4f17\u58eb\u5175b", "\u611a\u4eba\u4f17\u58eb\u5175c", "\u611a\u4eba\u4f17a", "\u611a\u4eba\u4f17b", "\u98de\u98de", "\u83f2\u5229\u514b\u65af", "\u5973\u6027\u8ddf\u968f\u8005", "\u9022\u5ca9", "\u6446\u6e21\u4eba", "\u72c2\u8e81\u7684\u7537\u4eba", "\u5965\u5179", "\u8299\u841d\u62c9", "\u8ddf\u968f\u8005", "\u871c\u6c41\u751f\u7269", "\u9ec4\u9ebb\u5b50", "\u6e0a\u4e0a", "\u85e4\u6728", "\u6df1\u89c1", "\u798f\u672c", "\u8299\u84c9", "\u53e4\u6cfd", "\u53e4\u7530", "\u53e4\u5c71", "\u53e4\u8c37\u6607", "\u5085\u4e09\u513f", "\u9ad8\u8001\u516d", "\u77ff\u5de5\u5192", "\u5143\u592a", "\u5fb7\u5b89\u516c", "\u8302\u624d\u516c", "\u6770\u62c9\u5fb7", "\u845b\u7f57\u4e3d", "\u91d1\u5ffd\u5f8b", "\u516c\u4fca", "\u9505\u5df4", "\u6b4c\u5fb7", "\u963f\u8c6a", "\u72d7\u4e09\u513f", "\u845b\u745e\u4e1d", "\u82e5\u5fc3", "\u963f\u5c71\u5a46", "\u602a\u9e1f", "\u5e7f\u7af9", "\u89c2\u6d77", "\u5173\u5b8f", "\u871c\u6c41\u536b\u5175", "\u5b88\u536b1", "\u50b2\u6162\u7684\u5b88\u536b", "\u5bb3\u6015\u7684\u5b88\u536b", "\u8d35\u5b89", "\u76d6\u4f0a", "\u963f\u521b", "\u54c8\u592b\u4e39", "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09", "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09", "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09", "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09", "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09", "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09", "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09", "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09", "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09", "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09", "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09", "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09", "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09", "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09", "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09", "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09", "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09", "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09", "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09", "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09", "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09", "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09", "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09", "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09", "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09", "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09", "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09", "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09", "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09", "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09", "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09", "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09", "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09", "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09", "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09", "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09", "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09", "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09", "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09", "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09", "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09", "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09", "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09", "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09", "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09", "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09", "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09", "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09", "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09", "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09", "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09", "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09", "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09", "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09", "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09", "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09", "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09", "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09", "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09", "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09", "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09", "\u6770\u514b", "\u963f\u5409", "\u6c5f\u821f", "\u9274\u79cb", "\u5609\u4e49", "\u7eaa\u82b3", "\u666f\u6f84", "\u7ecf\u7eb6", "\u666f\u660e", "\u664b\u4f18", "\u963f\u9e20", "\u9152\u5ba2", "\u4e54\u5c14", "\u4e54\u745f\u592b", "\u7ea6\u987f", "\u4e54\u4f0a\u65af", "\u5c45\u5b89", "\u541b\u541b", "\u987a\u5409", "\u7eaf\u4e5f", "\u91cd\u4f50", "\u5927\u5c9b\u7eaf\u5e73", "\u84b2\u6cfd", "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce", "\u67ab", "\u67ab\u539f\u4e49\u5e86", "\u836b\u5c71", "\u7532\u6590\u7530\u9f8d\u99ac", "\u6d77\u6597", "\u60df\u795e\u6674\u4e4b\u4ecb", "\u9e7f\u91ce\u5948\u5948", "\u5361\u7435\u8389\u4e9a", "\u51ef\u745f\u7433", "\u52a0\u85e4\u4fe1\u609f", "\u52a0\u85e4\u6d0b\u5e73", "\u80dc\u5bb6", "\u8305\u847a\u4e00\u5e86", "\u548c\u662d", "\u4e00\u6b63", "\u4e00\u9053", "\u6842\u4e00", "\u5e86\u6b21\u90ce", "\u963f\u8d24", "\u5065\u53f8", "\u5065\u6b21\u90ce", "\u5065\u4e09\u90ce", "\u5929\u7406", "\u6740\u624ba", "\u6740\u624bb", "\u6728\u5357\u674f\u5948", "\u6728\u6751", "\u56fd\u738b", "\u6728\u4e0b", "\u5317\u6751", "\u6e05\u60e0", "\u6e05\u4eba", "\u514b\u5217\u95e8\u7279", "\u9a91\u58eb", "\u5c0f\u6797", "\u5c0f\u6625", "\u5eb7\u62c9\u5fb7", "\u5927\u8089\u4e38", "\u7434\u7f8e", "\u5b8f\u4e00", "\u5eb7\u4ecb", "\u5e78\u5fb7", "\u9ad8\u5584", "\u68a2", "\u514b\u7f57\u7d22", "\u4e45\u4fdd", "\u4e5d\u6761\u9570\u6cbb", "\u4e45\u6728\u7530", "\u6606\u94a7", "\u83ca\u5730\u541b", "\u4e45\u5229\u987b", "\u9ed1\u7530", "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb", "\u54cd\u592a", "\u5c9a\u59d0", "\u5170\u6eaa", "\u6f9c\u9633", "\u52b3\u4f26\u65af", "\u4e50\u660e", "\u83b1\u8bfa", "\u83b2", "\u826f\u5b50", "\u674e\u5f53", "\u674e\u4e01", "\u5c0f\u4e50", "\u7075", "\u5c0f\u73b2", "\u7433\u7405a", "\u7433\u7405b", "\u5c0f\u5f6c", "\u5c0f\u5fb7", "\u5c0f\u697d", "\u5c0f\u9f99", "\u5c0f\u5434", "\u5c0f\u5434\u7684\u8bb0\u5fc6", "\u7406\u6b63", "\u963f\u9f99", "\u5362\u5361", "\u6d1b\u6210", "\u7f57\u5de7", "\u5317\u98ce\u72fc", "\u5362\u6b63", "\u840d\u59e5\u59e5", "\u524d\u7530", "\u771f\u663c", "\u9ebb\u7eaa", "\u771f", "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6", "\u5973\u6027a", "\u5973\u6027b", "\u5973\u6027a\u7684\u8ddf\u968f\u8005", "\u963f\u5b88", "\u739b\u683c\u4e3d\u7279", "\u771f\u7406", "\u739b\u4e54\u4e3d", "\u739b\u6587", "\u6b63\u80dc", "\u660c\u4fe1", "\u5c06\u53f8", "\u6b63\u4eba", "\u8def\u7237", "\u8001\u7ae0", "\u677e\u7530", "\u677e\u672c", "\u677e\u6d66", "\u677e\u5742", "\u8001\u5b5f", "\u5b5f\u4e39", "\u5546\u4eba\u968f\u4ece", "\u4f20\u4ee4\u5175", "\u7c73\u6b47\u5c14", "\u5fa1\u8206\u6e90\u4e00\u90ce", "\u5fa1\u8206\u6e90\u6b21\u90ce", "\u5343\u5ca9\u519b\u6559\u5934", "\u5343\u5ca9\u519b\u58eb\u5175", "\u660e\u535a", "\u660e\u4fca", "\u7f8e\u94c3", "\u7f8e\u548c", "\u963f\u5e78", "\u524a\u6708\u7b51\u9633\u771f\u541b", "\u94b1\u773c\u513f", "\u68ee\u5f66", "\u5143\u52a9", "\u7406\u6c34\u53e0\u5c71\u771f\u541b", "\u7406\u6c34\u758a\u5c71\u771f\u541b", "\u6731\u8001\u677f", "\u6728\u6728", "\u6751\u4e0a", "\u6751\u7530", "\u6c38\u91ce", "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb", "\u957f\u6fd1", "\u4e2d\u91ce\u5fd7\u4e43", "\u83dc\u83dc\u5b50", "\u6960\u6960", "\u6210\u6fd1", "\u963f\u5185", "\u5b81\u7984", "\u725b\u5fd7", "\u4fe1\u535a", "\u4f38\u592b", "\u91ce\u65b9", "\u8bfa\u62c9", "\u7eaa\u9999", "\u8bfa\u66fc", "\u4fee\u5973", "\u7eaf\u6c34\u7cbe\u7075", "\u5c0f\u5ddd", "\u5c0f\u4ed3\u6faa", "\u5188\u6797", "\u5188\u5d0e\u7ed8\u91cc\u9999", "\u5188\u5d0e\u9646\u6597", "\u5965\u62c9\u592b", "\u8001\u79d1", "\u9b3c\u5a46\u5a46", "\u5c0f\u91ce\u5bfa", "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8", "\u5927\u4e45\u4fdd\u5927\u4ecb", "\u5927\u68ee", "\u5927\u52a9", "\u5965\u7279", "\u6d3e\u8499", "\u6d3e\u84992", "\u75c5\u4ebaa", "\u75c5\u4ebab", "\u5df4\u987f", "\u6d3e\u6069", "\u670b\u4e49", "\u56f4\u89c2\u7fa4\u4f17", "\u56f4\u89c2\u7fa4\u4f17a", "\u56f4\u89c2\u7fa4\u4f17b", "\u56f4\u89c2\u7fa4\u4f17c", "\u56f4\u89c2\u7fa4\u4f17d", "\u56f4\u89c2\u7fa4\u4f17e", "\u94dc\u96c0", "\u963f\u80a5", "\u5174\u53d4", "\u8001\u5468\u53d4", "\u516c\u4e3b", "\u5f7c\u5f97", "\u4e7e\u5b50", "\u828a\u828a", "\u4e7e\u73ae", "\u7eee\u547d", "\u675e\u5e73", "\u79cb\u6708", "\u6606\u6069", "\u96f7\u7535\u5f71", "\u5170\u9053\u5c14", "\u96f7\u8499\u5fb7", "\u5192\u5931\u7684\u5e15\u62c9\u5fb7", "\u4f36\u4e00", "\u73b2\u82b1", "\u963f\u4ec1", "\u5bb6\u81e3\u4eec", "\u68a8\u7ed8", "\u8363\u6c5f", "\u620e\u4e16", "\u6d6a\u4eba", "\u7f57\u4f0a\u65af", "\u5982\u610f", "\u51c9\u5b50", "\u5f69\u9999", "\u9152\u4e95", "\u5742\u672c", "\u6714\u6b21\u90ce", "\u6b66\u58eba", "\u6b66\u58ebb", "\u6b66\u58ebc", "\u6b66\u58ebd", "\u73ca\u745a", "\u4e09\u7530", "\u838e\u62c9", "\u7b39\u91ce", "\u806a\u7f8e", "\u806a", "\u5c0f\u767e\u5408", "\u6563\u5175", "\u5bb3\u6015\u7684\u5c0f\u5218", "\u8212\u4f2f\u7279", "\u8212\u8328", "\u6d77\u9f99", "\u4e16\u5b50", "\u8c22\u5c14\u76d6", "\u5bb6\u4e01", "\u5546\u534e", "\u6c99\u5bc5", "\u963f\u5347", "\u67f4\u7530", "\u963f\u8302", "\u5f0f\u5927\u5c06", "\u6e05\u6c34", "\u5fd7\u6751\u52d8\u5175\u536b", "\u65b0\u4e4b\u4e1e", "\u5fd7\u7ec7", "\u77f3\u5934", "\u8bd7\u7fbd", "\u8bd7\u7b60", "\u77f3\u58ee", "\u7fd4\u592a", "\u6b63\u4e8c", "\u5468\u5e73", "\u8212\u6768", "\u9f50\u683c\u8299\u4e3d\u96c5", "\u5973\u58eb", "\u601d\u52e4", "\u516d\u6307\u4e54\u745f", "\u611a\u4eba\u4f17\u5c0f\u5175d", "\u611a\u4eba\u4f17\u5c0f\u5175a", "\u611a\u4eba\u4f17\u5c0f\u5175b", "\u611a\u4eba\u4f17\u5c0f\u5175c", "\u5434\u8001\u4e94", "\u5434\u8001\u4e8c", "\u6ed1\u5934\u9b3c", "\u8a00\u7b11", "\u5434\u8001\u4e03", "\u58eb\u5175h", "\u58eb\u5175i", "\u58eb\u5175a", "\u58eb\u5175b", "\u58eb\u5175c", "\u58eb\u5175d", "\u58eb\u5175e", "\u58eb\u5175f", "\u58eb\u5175g", "\u594f\u592a", "\u65af\u5766\u5229", "\u6387\u661f\u652b\u8fb0\u5929\u541b", "\u5c0f\u5934", "\u5927\u6b66", "\u9676\u4e49\u9686", "\u6749\u672c", "\u82cf\u897f", "\u5acc\u7591\u4ebaa", "\u5acc\u7591\u4ebab", "\u5acc\u7591\u4ebac", "\u5acc\u7591\u4ebad", "\u65af\u4e07", "\u5251\u5ba2a", "\u5251\u5ba2b", "\u963f\u4e8c", "\u5fe0\u80dc", "\u5fe0\u592b", "\u963f\u656c", "\u5b5d\u5229", "\u9e70\u53f8\u8fdb", "\u9ad8\u5c71", "\u4e5d\u6761\u5b5d\u884c", "\u6bc5", "\u7af9\u5185", "\u62d3\u771f", "\u5353\u4e5f", "\u592a\u90ce\u4e38", "\u6cf0\u52d2", "\u624b\u5c9b", "\u54f2\u5e73", "\u54f2\u592b", "\u6258\u514b", "\u5927boss", "\u963f\u5f3a", "\u6258\u5c14\u5fb7\u62c9", "\u65c1\u89c2\u8005", "\u5929\u6210", "\u963f\u5927", "\u8482\u739b\u4e4c\u65af", "\u63d0\u7c73", "\u6237\u7530", "\u963f\u4e09", "\u4e00\u8d77\u7684\u4eba", "\u5fb7\u7530", "\u5fb7\u957f", "\u667a\u6811", "\u5229\u5f66", "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005", "\u85cf\u5b9d\u4ebaa", "\u85cf\u5b9d\u4ebab", "\u85cf\u5b9d\u4ebac", "\u85cf\u5b9d\u4ebad", "\u963f\u7947", "\u6052\u96c4", "\u9732\u5b50", "\u8bdd\u5267\u56e2\u56e2\u957f", "\u5185\u6751", "\u4e0a\u91ce", "\u4e0a\u6749", "\u8001\u6234", "\u8001\u9ad8", "\u8001\u8d3e", "\u8001\u58a8", "\u8001\u5b59", "\u5929\u67a2\u661f", "\u8001\u4e91", "\u6709\u4e50\u658b", "\u4e11\u96c4", "\u4e4c\u7ef4", "\u74e6\u4eac", "\u83f2\u5c14\u6208\u9edb\u7279", "\u7ef4\u591a\u5229\u4e9a", "\u8587\u5c14", "\u74e6\u683c\u7eb3", "\u963f\u5916", "\u4f8d\u5973", "\u74e6\u62c9", "\u671b\u96c5", "\u5b9b\u70df", "\u742c\u7389", "\u6218\u58eba", "\u6218\u58ebb", "\u6e21\u8fba", "\u6e21\u90e8", "\u963f\u4f1f", "\u6587\u749f", "\u6587\u6e0a", "\u97e6\u5c14\u7eb3", "\u738b\u6273\u624b", "\u6b66\u6c9b", "\u6653\u98de", "\u8f9b\u7a0b", "\u661f\u706b", "\u661f\u7a00", "\u8f9b\u79c0", "\u79c0\u534e", "\u963f\u65ed", "\u5f90\u5218\u5e08", "\u77e2\u90e8", "\u516b\u6728", "\u5c71\u4e0a", "\u963f\u9633", "\u989c\u7b11", "\u5eb7\u660e", "\u6cf0\u4e45", "\u5b89\u6b66", "\u77e2\u7530\u5e78\u559c", "\u77e2\u7530\u8f9b\u559c", "\u4e49\u575a", "\u83ba\u513f", "\u76c8\u4e30", "\u5b9c\u5e74", "\u94f6\u674f", "\u9038\u8f69", "\u6a2a\u5c71", "\u6c38\u8d35", "\u6c38\u4e1a", "\u5609\u4e45", "\u5409\u5ddd", "\u4e49\u9ad8", "\u7528\u9ad8", "\u9633\u592a", "\u5143\u84c9", "\u73a5\u8f89", "\u6bd3\u534e", "\u6709\u9999", "\u5e78\u4e5f", "\u7531\u771f", "\u7ed3\u83dc", "\u97f5\u5b81", "\u767e\u5408", "\u767e\u5408\u534e", "\u5c24\u82cf\u6ce2\u592b", "\u88d5\u5b50", "\u60a0\u7b56", "\u60a0\u4e5f", "\u4e8e\u5ae3", "\u67da\u5b50", "\u8001\u90d1", "\u6b63\u8302", "\u5fd7\u6210", "\u82b7\u5de7", "\u77e5\u6613", "\u652f\u652f", "\u5468\u826f", "\u73e0\u51fd", "\u795d\u660e", "\u795d\u6d9b"], + "symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "] +} \ No newline at end of file diff --git a/data_utils.py b/data_utils.py new file mode 100644 index 0000000..4855699 --- /dev/null +++ b/data_utils.py @@ -0,0 +1,392 @@ +import time +import os +import random +import numpy as np +import torch +import torch.utils.data + +import commons +from mel_processing import spectrogram_torch +from utils import load_wav_to_torch, load_filepaths_and_text +from text import text_to_sequence, cleaned_text_to_sequence + + +class TextAudioLoader(torch.utils.data.Dataset): + """ + 1) loads audio, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + def __init__(self, audiopaths_and_text, hparams): + self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) + self.text_cleaners = hparams.text_cleaners + self.max_wav_value = hparams.max_wav_value + self.sampling_rate = hparams.sampling_rate + self.filter_length = hparams.filter_length + self.hop_length = hparams.hop_length + self.win_length = hparams.win_length + self.sampling_rate = hparams.sampling_rate + + self.cleaned_text = getattr(hparams, "cleaned_text", False) + + self.add_blank = hparams.add_blank + self.min_text_len = getattr(hparams, "min_text_len", 1) + self.max_text_len = getattr(hparams, "max_text_len", 190) + + random.seed(1234) + random.shuffle(self.audiopaths_and_text) + self._filter() + + + def _filter(self): + """ + Filter text & store spec lengths + """ + # Store spectrogram lengths for Bucketing + # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) + # spec_length = wav_length // hop_length + + audiopaths_and_text_new = [] + lengths = [] + for audiopath, text in self.audiopaths_and_text: + if self.min_text_len <= len(text) and len(text) <= self.max_text_len: + audiopaths_and_text_new.append([audiopath, text]) + lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) + self.audiopaths_and_text = audiopaths_and_text_new + self.lengths = lengths + + def get_audio_text_pair(self, audiopath_and_text): + # separate filename and text + audiopath, text = audiopath_and_text[0], audiopath_and_text[1] + text = self.get_text(text) + spec, wav = self.get_audio(audiopath) + return (text, spec, wav) + + def get_audio(self, filename): + audio, sampling_rate = load_wav_to_torch(filename) + if sampling_rate != self.sampling_rate: + raise ValueError("{} {} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + audio_norm = audio / self.max_wav_value + audio_norm = audio_norm.unsqueeze(0) + spec_filename = filename.replace(".wav", ".spec.pt") + if os.path.exists(spec_filename): + spec = torch.load(spec_filename) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + torch.save(spec, spec_filename) + return spec, audio_norm + + def get_text(self, text): + if self.cleaned_text: + text_norm = cleaned_text_to_sequence(text) + else: + text_norm = text_to_sequence(text, self.text_cleaners) + if self.add_blank: + text_norm = commons.intersperse(text_norm, 0) + text_norm = torch.LongTensor(text_norm) + return text_norm + + def __getitem__(self, index): + return self.get_audio_text_pair(self.audiopaths_and_text[index]) + + def __len__(self): + return len(self.audiopaths_and_text) + + +class TextAudioCollate(): + """ Zero-pads model inputs and targets + """ + def __init__(self, return_ids=False): + self.return_ids = return_ids + + def __call__(self, batch): + """Collate's training batch from normalized text and aduio + PARAMS + ------ + batch: [text_normalized, spec_normalized, wav_normalized] + """ + # Right zero-pad all one-hot text sequences to max input length + _, ids_sorted_decreasing = torch.sort( + torch.LongTensor([x[1].size(1) for x in batch]), + dim=0, descending=True) + + max_text_len = max([len(x[0]) for x in batch]) + max_spec_len = max([x[1].size(1) for x in batch]) + max_wav_len = max([x[2].size(1) for x in batch]) + + text_lengths = torch.LongTensor(len(batch)) + spec_lengths = torch.LongTensor(len(batch)) + wav_lengths = torch.LongTensor(len(batch)) + + text_padded = torch.LongTensor(len(batch), max_text_len) + spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) + wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) + text_padded.zero_() + spec_padded.zero_() + wav_padded.zero_() + for i in range(len(ids_sorted_decreasing)): + row = batch[ids_sorted_decreasing[i]] + + text = row[0] + text_padded[i, :text.size(0)] = text + text_lengths[i] = text.size(0) + + spec = row[1] + spec_padded[i, :, :spec.size(1)] = spec + spec_lengths[i] = spec.size(1) + + wav = row[2] + wav_padded[i, :, :wav.size(1)] = wav + wav_lengths[i] = wav.size(1) + + if self.return_ids: + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths + + +"""Multi speaker version""" +class TextAudioSpeakerLoader(torch.utils.data.Dataset): + """ + 1) loads audio, speaker_id, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + def __init__(self, audiopaths_sid_text, hparams): + self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) + self.text_cleaners = hparams.text_cleaners + self.max_wav_value = hparams.max_wav_value + self.sampling_rate = hparams.sampling_rate + self.filter_length = hparams.filter_length + self.hop_length = hparams.hop_length + self.win_length = hparams.win_length + self.sampling_rate = hparams.sampling_rate + + self.cleaned_text = getattr(hparams, "cleaned_text", False) + + self.add_blank = hparams.add_blank + self.min_text_len = getattr(hparams, "min_text_len", 1) + self.max_text_len = getattr(hparams, "max_text_len", 190) + + random.seed(1234) + random.shuffle(self.audiopaths_sid_text) + self._filter() + + def _filter(self): + """ + Filter text & store spec lengths + """ + # Store spectrogram lengths for Bucketing + # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) + # spec_length = wav_length // hop_length + + audiopaths_sid_text_new = [] + lengths = [] + for audiopath, sid, text in self.audiopaths_sid_text: + if self.min_text_len <= len(text) and len(text) <= self.max_text_len: + audiopaths_sid_text_new.append([audiopath, sid, text]) + lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) + self.audiopaths_sid_text = audiopaths_sid_text_new + self.lengths = lengths + + def get_audio_text_speaker_pair(self, audiopath_sid_text): + # separate filename, speaker_id and text + audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2] + text = self.get_text(text) + spec, wav = self.get_audio(audiopath) + sid = self.get_sid(sid) + return (text, spec, wav, sid) + + def get_audio(self, filename): + audio, sampling_rate = load_wav_to_torch(filename) + if sampling_rate != self.sampling_rate: + raise ValueError("{} {} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + audio_norm = audio / self.max_wav_value + audio_norm = audio_norm.unsqueeze(0) + spec_filename = filename.replace(".wav", ".spec.pt") + if os.path.exists(spec_filename): + spec = torch.load(spec_filename) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + torch.save(spec, spec_filename) + return spec, audio_norm + + def get_text(self, text): + if self.cleaned_text: + text_norm = cleaned_text_to_sequence(text) + else: + text_norm = text_to_sequence(text, self.text_cleaners) + if self.add_blank: + text_norm = commons.intersperse(text_norm, 0) + text_norm = torch.LongTensor(text_norm) + return text_norm + + def get_sid(self, sid): + sid = torch.LongTensor([int(sid)]) + return sid + + def __getitem__(self, index): + return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) + + def __len__(self): + return len(self.audiopaths_sid_text) + + +class TextAudioSpeakerCollate(): + """ Zero-pads model inputs and targets + """ + def __init__(self, return_ids=False): + self.return_ids = return_ids + + def __call__(self, batch): + """Collate's training batch from normalized text, audio and speaker identities + PARAMS + ------ + batch: [text_normalized, spec_normalized, wav_normalized, sid] + """ + # Right zero-pad all one-hot text sequences to max input length + _, ids_sorted_decreasing = torch.sort( + torch.LongTensor([x[1].size(1) for x in batch]), + dim=0, descending=True) + + max_text_len = max([len(x[0]) for x in batch]) + max_spec_len = max([x[1].size(1) for x in batch]) + max_wav_len = max([x[2].size(1) for x in batch]) + + text_lengths = torch.LongTensor(len(batch)) + spec_lengths = torch.LongTensor(len(batch)) + wav_lengths = torch.LongTensor(len(batch)) + sid = torch.LongTensor(len(batch)) + + text_padded = torch.LongTensor(len(batch), max_text_len) + spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) + wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) + text_padded.zero_() + spec_padded.zero_() + wav_padded.zero_() + for i in range(len(ids_sorted_decreasing)): + row = batch[ids_sorted_decreasing[i]] + + text = row[0] + text_padded[i, :text.size(0)] = text + text_lengths[i] = text.size(0) + + spec = row[1] + spec_padded[i, :, :spec.size(1)] = spec + spec_lengths[i] = spec.size(1) + + wav = row[2] + wav_padded[i, :, :wav.size(1)] = wav + wav_lengths[i] = wav.size(1) + + sid[i] = row[3] + + if self.return_ids: + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid + + +class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): + """ + Maintain similar input lengths in a batch. + Length groups are specified by boundaries. + Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. + + It removes samples which are not included in the boundaries. + Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. + """ + def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): + super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) + self.lengths = dataset.lengths + self.batch_size = batch_size + self.boundaries = boundaries + + self.buckets, self.num_samples_per_bucket = self._create_buckets() + self.total_size = sum(self.num_samples_per_bucket) + self.num_samples = self.total_size // self.num_replicas + + def _create_buckets(self): + buckets = [[] for _ in range(len(self.boundaries) - 1)] + for i in range(len(self.lengths)): + length = self.lengths[i] + idx_bucket = self._bisect(length) + if idx_bucket != -1: + buckets[idx_bucket].append(i) + + for i in range(len(buckets) - 1, 0, -1): + if len(buckets[i]) == 0: + buckets.pop(i) + self.boundaries.pop(i+1) + + num_samples_per_bucket = [] + for i in range(len(buckets)): + len_bucket = len(buckets[i]) + total_batch_size = self.num_replicas * self.batch_size + rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size + num_samples_per_bucket.append(len_bucket + rem) + return buckets, num_samples_per_bucket + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch) + + indices = [] + if self.shuffle: + for bucket in self.buckets: + indices.append(torch.randperm(len(bucket), generator=g).tolist()) + else: + for bucket in self.buckets: + indices.append(list(range(len(bucket)))) + + batches = [] + for i in range(len(self.buckets)): + bucket = self.buckets[i] + len_bucket = len(bucket) + ids_bucket = indices[i] + num_samples_bucket = self.num_samples_per_bucket[i] + + # add extra samples to make it evenly divisible + rem = num_samples_bucket - len_bucket + ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] + + # subsample + ids_bucket = ids_bucket[self.rank::self.num_replicas] + + # batching + for j in range(len(ids_bucket) // self.batch_size): + batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]] + batches.append(batch) + + if self.shuffle: + batch_ids = torch.randperm(len(batches), generator=g).tolist() + batches = [batches[i] for i in batch_ids] + self.batches = batches + + assert len(self.batches) * self.batch_size == self.num_samples + return iter(self.batches) + + def _bisect(self, x, lo=0, hi=None): + if hi is None: + hi = len(self.boundaries) - 1 + + if hi > lo: + mid = (hi + lo) // 2 + if self.boundaries[mid] < x and x <= self.boundaries[mid+1]: + return mid + elif x <= self.boundaries[mid]: + return self._bisect(x, lo, mid) + else: + return self._bisect(x, mid + 1, hi) + else: + return -1 + + def __len__(self): + return self.num_samples // self.batch_size diff --git a/filelists/miyu_train.txt b/filelists/miyu_train.txt new file mode 100644 index 0000000..db74cf8 --- /dev/null +++ b/filelists/miyu_train.txt @@ -0,0 +1,51 @@ +wav/ba/miyu/533522.wav|10|ブ、ブルー……アーカイブ…… +wav/ba/miyu/978431.wav|10|SRT特殊学園、ラビット小隊の霞沢ミユ、です…… あの、もう帰……っちゃ、だめですよね…… +wav/ba/miyu/589002.wav|10|お、お疲れ様です、先生…… +wav/ba/miyu/527590.wav|10|先生のお好きな時に、呼んでください……その、待つのは得意なので…… +wav/ba/miyu/145077.wav|10|あの、先生……私の名前、覚えてますか……? +wav/ba/miyu/39192.wav|10|新しい友達を作るなんて、そんな難しい事…… +wav/ba/miyu/649415.wav|10|ラビット小隊、もっと仲良くなれたら良いのに…… +wav/ba/miyu/306949.wav|10|もっと他の隊員みたいに、存在感があれば…… +wav/ba/miyu/255333.wav|10|私なんて、どこにでもいる小石みたいなものなので…… +wav/ba/miyu/616395.wav|10|そもそもどうして私なんかが、SRTに…… +wav/ba/miyu/164427.wav|10|呼吸を整えて……目標に、集中……。距離千,150メートル、風は東北東から15ノット……温湿度による誤差を補正…… +wav/ba/miyu/955071.wav|10|あ、あの……先生、できればその、そういった悪戯はご遠慮いただけますと……えっと、照準が乱れてしまうので…… +wav/ba/miyu/537029.wav|10|……なるほど。これは邪魔ではなく、実践に近い状況下での狙撃訓練、ということですよね……SRTでも、似たような訓練をしたような気が…… +wav/ba/miyu/750669.wav|10|ひゃぅっ……!?せ、先生……!いくら何でも、耳に息を吹きかけるのは……!? +wav/ba/miyu/412781.wav|10|あ、えっと、その…… +wav/ba/miyu/619085.wav|10|先生の指示、いいですね……怖く、無いので…… +wav/ba/miyu/827005.wav|10|先生は…私のことを見つけてくれますよね。いつも、どんな時でも… +wav/ba/miyu/706012.wav|10|こんな私でも…先生のお役に立てるといいのですが… +wav/ba/miyu/814441.wav|10|先生、私のことを見失わないで下さいね。 +wav/ba/miyu/946836.wav|10|せ、戦闘ですか +wav/ba/miyu/554075.wav|10|他の子の、邪魔にならないように…… +wav/ba/miyu/714649.wav|10|わ、わたしがリーダーですか +wav/ba/miyu/44255.wav|10|うまく、できるかも… +wav/ba/miyu/422295.wav|10|すみません…できればでいいのですが、わたしについできてください。 +wav/ba/miyu/155037.wav|10|あ、ありがとうございます。 +wav/ba/miyu/124180.wav|10|すこし本給します。 +wav/ba/miyu/173043.wav|10|隠れました! +wav/ba/miyu/379056.wav|10|もしかして、敵にも無視されます? +wav/ba/miyu/472324.wav|10|ポジション、変更します。 +wav/ba/miyu/986967.wav|10|え、援護射撃お願いします。 +wav/ba/miyu/356351.wav|10|あ、これ?私の分…ですか…? +wav/ba/miyu/930369.wav|10|みんな、ごめん。 +wav/ba/miyu/41287.wav|10|ヒット! +wav/ba/miyu/456869.wav|10|タンゴーダウン +wav/ba/miyu/55566.wav|10|い、移動します +wav/ba/miyu/389580.wav|10|わたし、ここにいってもいいのでしょうか… +wav/ba/miyu/130233.wav|10|わ、私のことはお気になされずに +wav/ba/miyu/29571.wav|10|えっと、私たちの勝次ですか…?本当に? +wav/ba/miyu/147691.wav|10|そんな…おかしいです。私なんかリーダーになって、勝てたなんて +wav/ba/miyu/974397.wav|10|こうなると思っていました。私がかかわると、結局いつもこんな風に +wav/ba/miyu/862032.wav|10|逃げたい、辛い、帰りたい… +wav/ba/miyu/618533.wav|10|こんないいものを、わたしが頂いても…? +wav/ba/miyu/90758.wav|10|戦術への理解が、より深まりました。 +wav/ba/miyu/861536.wav|10|せめて…SRTの名に恥じないよう、頑張ります。 +wav/ba/miyu/829111.wav|10|どうにか成長して、他のみんなの足を引っ張らないようにしないと… +wav/ba/miyu/709504.wav|10|ラビット39式小銃、確かに受け取りました。……やはり、少し重いですね。 +wav/ba/miyu/749189.wav|10|ひぁっ…私の誕生日、ですか……?ど、どうして覚えて…そんな…。あ、ありがとうございます……本当に、嬉しいです……! +wav/ba/miyu/536512.wav|10|せ、先生がその……本日、誕生日だと聞きまして……。野宿の立場なので、その、しっかりしたプレゼントはお渡しできないのですが……。 えっと、お祝いの言葉だけは、どうにか伝えたくて……。 +wav/ba/miyu/872843.wav|10|そういえば昔、ハロウィーンということでお化けの仮装をしたのですが。誰も、私の存在に気付いてくれませんでした……。 +wav/ba/miyu/436322.wav|10|今年は、SRTに帰れると良いですね +wav/ba/miyu/387627.wav|10|サンタクロースさんは、悪い子にはプレゼントを渡さないとか……いえ、そもそもサンタクロースさんも、私の存在を忘れているかもしれませんね。 diff --git a/filelists/miyu_train.txt.cleaned b/filelists/miyu_train.txt.cleaned new file mode 100644 index 0000000..f3aa790 --- /dev/null +++ b/filelists/miyu_train.txt.cleaned @@ -0,0 +1,51 @@ +wav/ba/miyu/533522.wav|10|b ɯ, bɯ↑rɯ↓ɯ…… a↑aka↓ibɯ…… +wav/ba/miyu/978431.wav|10|e↑sɯaarɯtiito↓kUʃɯ ga↑kɯeN, ra↑biQtoʃo↓otaino ka↑sɯmi↓sawa mi↓yɯ, de↓sU…… a↑no, mo↓o k i…… Q↓ʧa, da↑me↓desUyone…… +wav/ba/miyu/589002.wav|10|o, o↑ʦUkaresamadesU, se↑Nse↓e…… +wav/ba/miyu/527590.wav|10|se↑Nse↓eno o↑sUkina to↑ki↓ni, yo↑Nde kɯ↑dasa↓i…… so↑no, ma↓ʦɯ no↑wa to↑kɯ↓inanode…… +wav/ba/miyu/145077.wav|10|a↑no, se↑Nse↓e…… wa↑taʃino na↑mae, o↑boe↓temasUka……? +wav/ba/miyu/39192.wav|10|a↑taraʃi↓i to↑modaʧio ʦU↑kɯ↓rɯnaNte, so↑Nna mɯ↑zɯkaʃi↓i ko↑to…… +wav/ba/miyu/649415.wav|10|ra↑biQtoʃo↓otai, mo↓Qto na↓kayokɯ na↑re↓tara yo↓inoni…… +wav/ba/miyu/306949.wav|10|mo↓Qto ho↑kano ta↑iiNmi↓taini, so↑Nzai↓kaNga a↑re↓ba…… +wav/ba/miyu/255333.wav|10|wa↑taʃina↓Nte, do↓konidemo i↑rɯ ko↑iʃimi↓taina mo↑no↓nanode…… +wav/ba/miyu/616395.wav|10|so↓mosomo do↓oʃIte wa↑taʃina↓Nkaga, e↑sɯaarɯtiini…… +wav/ba/miyu/164427.wav|10|ko↑kyɯɯo to↑tonoe↓te…… mo↑kUhyooni, ʃɯ↑ɯʧɯɯ……. kyo↑ri↓seN, hya↑kɯ go↑jɯɯme↓etorɯ, ka↑zewa to↑ohokUtookara jɯ↑ɯ go↑no↓Qto…… yɯ↑takaʃi↓ʦɯdoni yo↑rɯ go↓sao ho↑see…… +wav/ba/miyu/955071.wav|10|a, a↑no…… se↑Nse↓e, de↑ki↓reba so↑no, so↑oiQta i↑tazɯrawa go↑e↓Nryo i↑tadakema↓sUto…… e↑Qto, ʃo↑ojɯNga mi↑dare↓te ʃi↑maɯ↓node…… +wav/ba/miyu/537029.wav|10|…… na↑rɯhodo. ko↑rewa ja↑made↓wanakɯ, ji↑QseNni ʧI↑ka↓i jo↑okyoo↓kadeno so↑gekIkɯ↓NreN, t o i↑ɯ ko↑to↓desUyone…… e↑sɯaarɯtiidemo, ni↑ta yo↓ona kɯ↓NreNo ʃI↑ta yo↓ona ki↑ga…… +wav/ba/miyu/750669.wav|10|hya↓ɯQ……!? s e, se↑Nse↓e……! i↓kɯra na↓nidemo, mi↑mi↓ni i↓kio fU↑kikake↓rɯ no↑wa……!? +wav/ba/miyu/412781.wav|10|a, e↑Qto, so↑no…… +wav/ba/miyu/619085.wav|10|se↑Nse↓eno ʃi↓ji, i↓idesUne…… ko↑wa↓kɯ, na↓inode…… +wav/ba/miyu/827005.wav|10|se↑Nse↓ewa… wa↑taʃino ko↑to↓o mi↑ʦUkete kɯ↑rema↓sUyone. i↓ʦɯmo, do↓Nna to↑ki↓demo… +wav/ba/miyu/706012.wav|10|ko↑Nna wa↑taʃide↓mo… se↑Nse↓eno o↑yakɯni ta↑te↓rɯto i↓i no↑de↓sUga… +wav/ba/miyu/814441.wav|10|se↑Nse↓e, wa↑taʃino ko↑to↓o mi↑ɯʃina↓wanaide kɯ↑dasa↓ine. +wav/ba/miyu/946836.wav|10|s e, se↑Ntoode↓sUka. +wav/ba/miyu/554075.wav|10|ta↓no ko↑no, ja↑mani na↑ra↓nai yo↓oni…… +wav/ba/miyu/714649.wav|10|w a, wa↑taʃiga ri↓idaadesUka. +wav/ba/miyu/44255.wav|10|ɯ↑ma↓kɯ, de↑ki↓rɯkamo… +wav/ba/miyu/422295.wav|10|sɯ↑mimase↓N… de↑ki↓rebade i↓i no↑de↓sUga, wa↑taʃini ʦɯ↓i de↑ki↓te kɯ↑dasa↓i. +wav/ba/miyu/155037.wav|10|a, a↑ri↓gatoo go↑zaima↓sU. +wav/ba/miyu/124180.wav|10|sU↑ko↓ʃI ho↓Nkyɯɯ ʃi↑ma↓sU. +wav/ba/miyu/173043.wav|10|ka↑kɯrema↓ʃIta! +wav/ba/miyu/379056.wav|10|mo↓ʃIkaʃIte, te↑kinimo mɯ↓ʃI sa↑rema↓sU? +wav/ba/miyu/472324.wav|10|po↑ji↓ʃoN, he↑Nkoo ʃi↑ma↓sU. +wav/ba/miyu/986967.wav|10|e, e↑Ngoʃagekio↓negai ʃi↑ma↓sU. +wav/ba/miyu/356351.wav|10|a, ko↑re? wa↑taʃino bɯ↓N… de↓sUka…? +wav/ba/miyu/930369.wav|10|mi↑Nna, go↑meN. +wav/ba/miyu/41287.wav|10|hi↓Qto! +wav/ba/miyu/456869.wav|10|ta↓NgoodaɯN. +wav/ba/miyu/55566.wav|10|i, i↑doo ʃi↑ma↓sU. +wav/ba/miyu/389580.wav|10|wa↑taʃi, ko↑koni i↑Qtemo i↓i no↑deʃoo↓ka… +wav/ba/miyu/130233.wav|10|w a, wa↑taʃino ko↑to↓wa o↑kini na↑sarezɯni. +wav/ba/miyu/29571.wav|10|e↑Qto, wa↑taʃi↓taʧino ka↓ʦɯjidesUka…? ho↑Ntooni? +wav/ba/miyu/147691.wav|10|so↑Nna… o↑kaʃi↓idesU. wa↑taʃina↓Nka ri↓idaani na↓Qte, ka↑te↓tanaNte. +wav/ba/miyu/974397.wav|10|ko↑o na↓rɯto o↑mo↓Qte i↑ma↓ʃIta. wa↑taʃiga ka↑kawa↓rɯto, ke↑Qkyokɯ i↓ʦɯmo ko↑Nna ka↑zeni. +wav/ba/miyu/862032.wav|10|ni↑geta↓i, ʦɯ↑ra↓i, ka↑erita↓i… +wav/ba/miyu/618533.wav|10|ko↑Nna i↓i mo↑no↓o, wa↑taʃiga i↑tadaitemo…? +wav/ba/miyu/90758.wav|10|se↑Njɯʦɯeno ri↓kaiga, yo↓ri fU↑kamarima↓ʃIta. +wav/ba/miyu/861536.wav|10|se↓mete… e↑sɯaarɯtiino na↑ni ha↑ji↓nai yo↓o, ga↑Nbarima↓sU. +wav/ba/miyu/829111.wav|10|do↓onika se↑eʧoo ʃI↑te, ta↓no mi↑Nna↓no a↑ʃi↓o hi↑Qpara↓nai yo↓oni ʃi↑naito… +wav/ba/miyu/709504.wav|10|ra↓biQto sa↓Njɯɯ kyɯ↑ɯ↓ʃIki ʃo↑ojɯɯ, ta↓ʃIkani ɯ↑ketorima↓ʃIta……. ya↑ha↓ri, sU↑ko↓ʃi o↑moi↓desUne. +wav/ba/miyu/749189.wav|10|hi↓aQ… wa↑taʃino ta↑Njoo↓bi, de↓sUka……? d o, do↓oʃIte o↑boe↓te… so↑Nna…. a, a↑ri↓gatoo go↑zaima↓sU…… ho↑Ntooni, ɯ↑reʃi↓idesU……! +wav/ba/miyu/536512.wav|10|s e, se↑Nse↓ega so↑no…… ho↓Njiʦɯ, ta↑Njoo↓bidato kI↑kima↓ʃIte……. no↓jɯkɯno ta↓ʧibananode, so↑no, ʃi↑Qka↓ri ʃI↑ta pɯ↑re↓zeNtowa o↑wa↓taʃi de↑ki↓nai no↑de↓sUga……. e↑Qto, o↑iwaino ko↑tobadakewa, do↓onika ʦU↑taeta↓kUte……. +wav/ba/miyu/872843.wav|10|so↑o i↓eba mɯ↑kaʃi, ha↑rowi↓iNto i↑ɯ ko↑to↓de o↑ba↓keno ka↑sooo ʃI↑ta no↑de↓sUga. da↓remo, wa↑taʃino so↑Nzaini ki↑zɯ↓ite kɯ↑remase↓NdeʃIta……. +wav/ba/miyu/436322.wav|10|ko↑toʃiwa, e↑sɯaarɯtiini ka↑ere↓rɯto yo↓idesUne. +wav/ba/miyu/387627.wav|10|sa↑Ntakɯro↓osɯsaNwa, wa↑rɯ↓i ko↑niwa pɯ↑re↓zeNtoo wa↑tasanaitoka…… i↓e, so↓mosomo sa↑Ntakɯro↓osɯsaNmo, wa↑taʃino so↑Nzaio wa↑sɯrete i↑rɯkamo ʃi↑remase↓Nne. diff --git a/filelists/miyu_val.txt b/filelists/miyu_val.txt new file mode 100644 index 0000000..4ced122 --- /dev/null +++ b/filelists/miyu_val.txt @@ -0,0 +1,6 @@ +wav/ba/miyu/916145.wav|10|ど、どしてこんなことに… +wav/ba/miyu/139528.wav|10|え、援護します +wav/ba/miyu/211336.wav|10|やっぱり私は何もできないゴミ物なんだ +wav/ba/miyu/886881.wav|10|私はその辺の小石 +wav/ba/miyu/899245.wav|10|SRTに入らなければ良かった +wav/ba/miyu/805836.wav|10|な、何か、遮蔽物は……? \ No newline at end of file diff --git a/filelists/miyu_val.txt.cleaned b/filelists/miyu_val.txt.cleaned new file mode 100644 index 0000000..42b8ff7 --- /dev/null +++ b/filelists/miyu_val.txt.cleaned @@ -0,0 +1,6 @@ +wav/ba/miyu/916145.wav|10|d o, do↑ʃi↓te ko↑Nna ko↑to↓ni… +wav/ba/miyu/139528.wav|10|e, e↓Ngo ʃi↑ma↓sU. +wav/ba/miyu/211336.wav|10|ya↑Qpa↓ri wa↑taʃiwa na↓nimo de↑ki↓nai go↑mibɯʦɯna N↓da. +wav/ba/miyu/886881.wav|10|wa↑taʃiwa so↑no a↑tarino ko↑iʃi. +wav/ba/miyu/899245.wav|10|e↑sɯaarɯtiini ha↑ira↓nakereba yo↓kaQta. +wav/ba/miyu/805836.wav|10|n a, na↓nika, ʃa↑heebɯʦɯwa……? diff --git a/inference.ipynb b/inference.ipynb new file mode 100644 index 0000000..b4b5d84 --- /dev/null +++ b/inference.ipynb @@ -0,0 +1,205 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import IPython.display as ipd\n", + "\n", + "import os\n", + "import json\n", + "import math\n", + "import torch\n", + "from torch import nn\n", + "from torch.nn import functional as F\n", + "from torch.utils.data import DataLoader\n", + "\n", + "import commons\n", + "import utils\n", + "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n", + "from models import SynthesizerTrn\n", + "from text.symbols import symbols\n", + "from text import text_to_sequence\n", + "\n", + "from scipy.io.wavfile import write\n", + "\n", + "\n", + "def get_text(text, hps):\n", + " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n", + " if hps.data.add_blank:\n", + " text_norm = commons.intersperse(text_norm, 0)\n", + " text_norm = torch.LongTensor(text_norm)\n", + " return text_norm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Single Speaker" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hps = utils.get_hparams_from_file(\"configs/XXX.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "net_g = SynthesizerTrn(\n", + " len(symbols),\n", + " hps.data.filter_length // 2 + 1,\n", + " hps.train.segment_size // hps.data.hop_length,\n", + " **hps.model).cuda()\n", + "_ = net_g.eval()\n", + "\n", + "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "stn_tst = get_text(\"こんにちは\", hps)\n", + "with torch.no_grad():\n", + " x_tst = stn_tst.cuda().unsqueeze(0)\n", + " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n", + " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n", + "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiple Speakers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hps = utils.get_hparams_from_file(\"./configs/XXX.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "net_g = SynthesizerTrn(\n", + " len(symbols),\n", + " hps.data.filter_length // 2 + 1,\n", + " hps.train.segment_size // hps.data.hop_length,\n", + " n_speakers=hps.data.n_speakers,\n", + " **hps.model).cuda()\n", + "_ = net_g.eval()\n", + "\n", + "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "stn_tst = get_text(\"こんにちは\", hps)\n", + "with torch.no_grad():\n", + " x_tst = stn_tst.cuda().unsqueeze(0)\n", + " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n", + " sid = torch.LongTensor([4]).cuda()\n", + " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n", + "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Voice Conversion" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n", + "collate_fn = TextAudioSpeakerCollate()\n", + "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n", + " batch_size=1, pin_memory=True,\n", + " drop_last=True, collate_fn=collate_fn)\n", + "data_list = list(loader)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with torch.no_grad():\n", + " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n", + " sid_tgt1 = torch.LongTensor([1]).cuda()\n", + " sid_tgt2 = torch.LongTensor([2]).cuda()\n", + " sid_tgt3 = torch.LongTensor([4]).cuda()\n", + " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n", + " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n", + " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n", + "print(\"Original SID: %d\" % sid_src.item())\n", + "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n", + "print(\"Converted SID: %d\" % sid_tgt1.item())\n", + "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n", + "print(\"Converted SID: %d\" % sid_tgt2.item())\n", + "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n", + "print(\"Converted SID: %d\" % sid_tgt3.item())\n", + "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.9 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "vscode": { + "interpreter": { + "hash": "c15292341d300295ca9f634d04c483f667a0c1d5ee0c309c2ac4e312cce8b8df" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/losses.py b/losses.py new file mode 100644 index 0000000..fb22a0e --- /dev/null +++ b/losses.py @@ -0,0 +1,61 @@ +import torch +from torch.nn import functional as F + +import commons + + +def feature_loss(fmap_r, fmap_g): + loss = 0 + for dr, dg in zip(fmap_r, fmap_g): + for rl, gl in zip(dr, dg): + rl = rl.float().detach() + gl = gl.float() + loss += torch.mean(torch.abs(rl - gl)) + + return loss * 2 + + +def discriminator_loss(disc_real_outputs, disc_generated_outputs): + loss = 0 + r_losses = [] + g_losses = [] + for dr, dg in zip(disc_real_outputs, disc_generated_outputs): + dr = dr.float() + dg = dg.float() + r_loss = torch.mean((1-dr)**2) + g_loss = torch.mean(dg**2) + loss += (r_loss + g_loss) + r_losses.append(r_loss.item()) + g_losses.append(g_loss.item()) + + return loss, r_losses, g_losses + + +def generator_loss(disc_outputs): + loss = 0 + gen_losses = [] + for dg in disc_outputs: + dg = dg.float() + l = torch.mean((1-dg)**2) + gen_losses.append(l) + loss += l + + return loss, gen_losses + + +def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): + """ + z_p, logs_q: [b, h, t_t] + m_p, logs_p: [b, h, t_t] + """ + z_p = z_p.float() + logs_q = logs_q.float() + m_p = m_p.float() + logs_p = logs_p.float() + z_mask = z_mask.float() + + kl = logs_p - logs_q - 0.5 + kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) + kl = torch.sum(kl * z_mask) + l = kl / torch.sum(z_mask) + return l diff --git a/mel_processing.py b/mel_processing.py new file mode 100644 index 0000000..817f037 --- /dev/null +++ b/mel_processing.py @@ -0,0 +1,112 @@ +import math +import os +import random +import torch +from torch import nn +import torch.nn.functional as F +import torch.utils.data +import numpy as np +import librosa +import librosa.util as librosa_util +from librosa.util import normalize, pad_center, tiny +from scipy.signal import get_window +from scipy.io.wavfile import read +from librosa.filters import mel as librosa_mel_fn + +MAX_WAV_VALUE = 32768.0 + + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression_torch(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def spectral_normalize_torch(magnitudes): + output = dynamic_range_compression_torch(magnitudes) + return output + + +def spectral_de_normalize_torch(magnitudes): + output = dynamic_range_decompression_torch(magnitudes) + return output + + +mel_basis = {} +hann_window = {} + + +def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): + global mel_basis + dtype_device = str(spec.dtype) + '_' + str(spec.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + return spec + + +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + + return spec diff --git a/models.py b/models.py new file mode 100644 index 0000000..f5acdeb --- /dev/null +++ b/models.py @@ -0,0 +1,534 @@ +import copy +import math +import torch +from torch import nn +from torch.nn import functional as F + +import commons +import modules +import attentions +import monotonic_align + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from commons import init_weights, get_padding + + +class StochasticDurationPredictor(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): + super().__init__() + filter_channels = in_channels # it needs to be removed from future version. + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.log_flow = modules.Log() + self.flows = nn.ModuleList() + self.flows.append(modules.ElementwiseAffine(2)) + for i in range(n_flows): + self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) + self.flows.append(modules.Flip()) + + self.post_pre = nn.Conv1d(1, filter_channels, 1) + self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) + self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) + self.post_flows = nn.ModuleList() + self.post_flows.append(modules.ElementwiseAffine(2)) + for i in range(4): + self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) + self.post_flows.append(modules.Flip()) + + self.pre = nn.Conv1d(in_channels, filter_channels, 1) + self.proj = nn.Conv1d(filter_channels, filter_channels, 1) + self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, filter_channels, 1) + + def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): + x = torch.detach(x) + x = self.pre(x) + if g is not None: + g = torch.detach(g) + x = x + self.cond(g) + x = self.convs(x, x_mask) + x = self.proj(x) * x_mask + + if not reverse: + flows = self.flows + assert w is not None + + logdet_tot_q = 0 + h_w = self.post_pre(w) + h_w = self.post_convs(h_w, x_mask) + h_w = self.post_proj(h_w) * x_mask + e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask + z_q = e_q + for flow in self.post_flows: + z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) + logdet_tot_q += logdet_q + z_u, z1 = torch.split(z_q, [1, 1], 1) + u = torch.sigmoid(z_u) * x_mask + z0 = (w - u) * x_mask + logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2]) + logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q + + logdet_tot = 0 + z0, logdet = self.log_flow(z0, x_mask) + logdet_tot += logdet + z = torch.cat([z0, z1], 1) + for flow in flows: + z, logdet = flow(z, x_mask, g=x, reverse=reverse) + logdet_tot = logdet_tot + logdet + nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot + return nll + logq # [b] + else: + flows = list(reversed(self.flows)) + flows = flows[:-2] + [flows[-1]] # remove a useless vflow + z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale + for flow in flows: + z = flow(z, x_mask, g=x, reverse=reverse) + z0, z1 = torch.split(z, [1, 1], 1) + logw = z0 + return logw + + +class DurationPredictor(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): + super().__init__() + + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.gin_channels = gin_channels + + self.drop = nn.Dropout(p_dropout) + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) + self.norm_1 = modules.LayerNorm(filter_channels) + self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) + self.norm_2 = modules.LayerNorm(filter_channels) + self.proj = nn.Conv1d(filter_channels, 1, 1) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, in_channels, 1) + + def forward(self, x, x_mask, g=None): + x = torch.detach(x) + if g is not None: + g = torch.detach(g) + x = x + self.cond(g) + x = self.conv_1(x * x_mask) + x = torch.relu(x) + x = self.norm_1(x) + x = self.drop(x) + x = self.conv_2(x * x_mask) + x = torch.relu(x) + x = self.norm_2(x) + x = self.drop(x) + x = self.proj(x * x_mask) + return x * x_mask + + +class TextEncoder(nn.Module): + def __init__(self, + n_vocab, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout): + super().__init__() + self.n_vocab = n_vocab + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + + self.emb = nn.Embedding(n_vocab, hidden_channels) + nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) + + self.encoder = attentions.Encoder( + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout) + self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths): + x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return x, m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class PosteriorEncoder(nn.Module): + def __init__(self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + +class Generator(torch.nn.Module): + def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) + resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append(weight_norm( + ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), + k, u, padding=(k-u)//2))) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel//(2**(i+1)) + for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i*self.num_kernels+j](x) + else: + xs += self.resblocks[i*self.num_kernels+j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + print('Removing weight norm...') + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), + ]) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ]) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2,3,5,7,11] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + + +class SynthesizerTrn(nn.Module): + """ + Synthesizer for Training + """ + + def __init__(self, + n_vocab, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + n_speakers=0, + gin_channels=0, + use_sdp=True, + **kwargs): + + super().__init__() + self.n_vocab = n_vocab + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.n_speakers = n_speakers + self.gin_channels = gin_channels + + self.use_sdp = use_sdp + + self.enc_p = TextEncoder(n_vocab, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout) + self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) + self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) + self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) + + if use_sdp: + self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) + else: + self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) + + if n_speakers > 1: + self.emb_g = nn.Embedding(n_speakers, gin_channels) + + def forward(self, x, x_lengths, y, y_lengths, sid=None): + + x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) + if self.n_speakers > 0: + g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] + else: + g = None + + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + + with torch.no_grad(): + # negative cross-entropy + s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] + neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s] + neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] + neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] + neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s] + neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 + + attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) + attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() + + w = attn.sum(2) + if self.use_sdp: + l_length = self.dp(x, x_mask, w, g=g) + l_length = l_length / torch.sum(x_mask) + else: + logw_ = torch.log(w + 1e-6) * x_mask + logw = self.dp(x, x_mask, g=g) + l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging + + # expand prior + m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) + logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) + + z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) + o = self.dec(z_slice, g=g) + return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None): + x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) + if self.n_speakers > 0: + g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] + else: + g = None + + if self.use_sdp: + logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) + else: + logw = self.dp(x, x_mask, g=g) + w = torch.exp(logw) * x_mask * length_scale + w_ceil = torch.ceil(w) + y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() + y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) + attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) + attn = commons.generate_path(w_ceil, attn_mask) + + m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] + logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] + + z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale + z = self.flow(z_p, y_mask, g=g, reverse=True) + o = self.dec((z * y_mask)[:,:,:max_len], g=g) + return o, attn, y_mask, (z, z_p, m_p, logs_p) + + def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): + assert self.n_speakers > 0, "n_speakers have to be larger than 0." + g_src = self.emb_g(sid_src).unsqueeze(-1) + g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) + z_p = self.flow(z, y_mask, g=g_src) + z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) + o_hat = self.dec(z_hat * y_mask, g=g_tgt) + return o_hat, y_mask, (z, z_p, z_hat) + diff --git a/modules.py b/modules.py new file mode 100644 index 0000000..9c7fd9c --- /dev/null +++ b/modules.py @@ -0,0 +1,390 @@ +import copy +import math +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import functional as F + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm + +import commons +from commons import init_weights, get_padding +from transforms import piecewise_rational_quadratic_transform + + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential( + nn.ReLU(), + nn.Dropout(p_dropout)) + for _ in range(n_layers-1): + self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size ** i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, + groups=channels, dilation=dilation, padding=padding + )) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): + super(WN, self).__init__() + assert(kernel_size % 2 == 1) + self.hidden_channels =hidden_channels + self.kernel_size = kernel_size, + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') + + for i in range(n_layers): + dilation = dilation_rate ** i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, + dilation=dilation, padding=padding) + in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply( + x_in, + g_l, + n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:,:self.hidden_channels,:] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:,self.hidden_channels:,:] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]))) + ]) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))) + ]) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))) + ]) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels,1)) + self.logs = nn.Parameter(torch.zeros(channels,1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1,2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels]*2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels]*2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1,2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + +class ConvFlow(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): + super().__init__() + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.num_bins = num_bins + self.tail_bound = tail_bound + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) + self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) + self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels]*2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_derivatives = h[..., 2 * self.num_bins:] + + x1, logabsdet = piecewise_rational_quadratic_transform(x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails='linear', + tail_bound=self.tail_bound + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1,2]) + if not reverse: + return x, logdet + else: + return x diff --git a/monotonic_align/__init__.py b/monotonic_align/__init__.py new file mode 100644 index 0000000..3d7009c --- /dev/null +++ b/monotonic_align/__init__.py @@ -0,0 +1,19 @@ +import numpy as np +import torch +from .monotonic_align.core import maximum_path_c + + +def maximum_path(neg_cent, mask): + """ Cython optimized version. + neg_cent: [b, t_t, t_s] + mask: [b, t_t, t_s] + """ + device = neg_cent.device + dtype = neg_cent.dtype + neg_cent = neg_cent.data.cpu().numpy().astype(np.float32) + path = np.zeros(neg_cent.shape, dtype=np.int32) + + t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) + t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) + maximum_path_c(path, neg_cent, t_t_max, t_s_max) + return torch.from_numpy(path).to(device=device, dtype=dtype) diff --git a/monotonic_align/core.pyx b/monotonic_align/core.pyx new file mode 100644 index 0000000..bfaabd4 --- /dev/null +++ b/monotonic_align/core.pyx @@ -0,0 +1,42 @@ +cimport cython +from cython.parallel import prange + + +@cython.boundscheck(False) +@cython.wraparound(False) +cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil: + cdef int x + cdef int y + cdef float v_prev + cdef float v_cur + cdef float tmp + cdef int index = t_x - 1 + + for y in range(t_y): + for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)): + if x == y: + v_cur = max_neg_val + else: + v_cur = value[y-1, x] + if x == 0: + if y == 0: + v_prev = 0. + else: + v_prev = max_neg_val + else: + v_prev = value[y-1, x-1] + value[y, x] += max(v_prev, v_cur) + + for y in range(t_y - 1, -1, -1): + path[y, index] = 1 + if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]): + index = index - 1 + + +@cython.boundscheck(False) +@cython.wraparound(False) +cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil: + cdef int b = paths.shape[0] + cdef int i + for i in prange(b, nogil=True): + maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i]) diff --git a/monotonic_align/setup.py b/monotonic_align/setup.py new file mode 100644 index 0000000..30c2248 --- /dev/null +++ b/monotonic_align/setup.py @@ -0,0 +1,9 @@ +from distutils.core import setup +from Cython.Build import cythonize +import numpy + +setup( + name = 'monotonic_align', + ext_modules = cythonize("core.pyx"), + include_dirs=[numpy.get_include()] +) diff --git a/preprocess.py b/preprocess.py new file mode 100644 index 0000000..6e2859f --- /dev/null +++ b/preprocess.py @@ -0,0 +1,25 @@ +import argparse +import text +from utils import load_filepaths_and_text + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("--out_extension", default="cleaned") + parser.add_argument("--text_index", default=2, type=int) + parser.add_argument("--filelists", nargs="+", default=["filelists/miyu_train.txt", "filelists/miyu_val.txt"]) + parser.add_argument("--text_cleaners", nargs="+", default=["japanese_cleaners"]) + + args = parser.parse_args() + + + for filelist in args.filelists: + print("START:", filelist) + filepaths_and_text = load_filepaths_and_text(filelist) + for i in range(len(filepaths_and_text)): + original_text = filepaths_and_text[i][args.text_index] + cleaned_text = text._clean_text(original_text, args.text_cleaners) + filepaths_and_text[i][args.text_index] = cleaned_text + + new_filelist = filelist + "." + args.out_extension + with open(new_filelist, "w", encoding="utf-8") as f: + f.writelines(["|".join(x) + "\n" for x in filepaths_and_text]) diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..eae59d3 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,11 @@ +Cython==0.29.21 +librosa==0.8.0 +matplotlib==3.3.1 +numpy==1.21.6 +scipy==1.5.2 +tensorboard==2.3.0 +torch==1.6.0 +torchvision==0.7.0 +unidecode==1.3.4 +pyopenjtalk==0.2.0 +protobuf==3.19.0 diff --git a/text/LICENSE b/text/LICENSE new file mode 100644 index 0000000..4ad4ed1 --- /dev/null +++ b/text/LICENSE @@ -0,0 +1,19 @@ +Copyright (c) 2017 Keith Ito + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/text/__init__.py b/text/__init__.py new file mode 100644 index 0000000..48ae82f --- /dev/null +++ b/text/__init__.py @@ -0,0 +1,56 @@ +""" from https://github.com/keithito/tacotron """ +from text import cleaners +from text.symbols import symbols + + +# Mappings from symbol to numeric ID and vice versa: +_symbol_to_id = {s: i for i, s in enumerate(symbols)} +_id_to_symbol = {i: s for i, s in enumerate(symbols)} + + +def text_to_sequence(text, cleaner_names): + '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. + Args: + text: string to convert to a sequence + cleaner_names: names of the cleaner functions to run the text through + Returns: + List of integers corresponding to the symbols in the text + ''' + sequence = [] + + clean_text = _clean_text(text, cleaner_names) + for symbol in clean_text: + if symbol not in _symbol_to_id.keys(): + continue + symbol_id = _symbol_to_id[symbol] + sequence += [symbol_id] + return sequence + + +def cleaned_text_to_sequence(cleaned_text): + '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. + Args: + text: string to convert to a sequence + Returns: + List of integers corresponding to the symbols in the text + ''' + sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()] + return sequence + + +def sequence_to_text(sequence): + '''Converts a sequence of IDs back to a string''' + result = '' + for symbol_id in sequence: + s = _id_to_symbol[symbol_id] + result += s + return result + + +def _clean_text(text, cleaner_names): + for name in cleaner_names: + cleaner = getattr(cleaners, name) + if not cleaner: + raise Exception('Unknown cleaner: %s' % name) + text = cleaner(text) + return text diff --git a/text/cleaners.py b/text/cleaners.py new file mode 100644 index 0000000..4da31f1 --- /dev/null +++ b/text/cleaners.py @@ -0,0 +1,10 @@ +import re +from text.japanese import japanese_to_romaji_with_accent + +def japanese_cleaners(text): + text = f'[JA]{text}[JA]' + text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent( + x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')+' ', text) + text = re.sub(r'\s+$', '', text) + text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text) + return text diff --git a/text/japanese.py b/text/japanese.py new file mode 100644 index 0000000..375e4d5 --- /dev/null +++ b/text/japanese.py @@ -0,0 +1,153 @@ +import re +from unidecode import unidecode +import pyopenjtalk + + +# Regular expression matching Japanese without punctuation marks: +_japanese_characters = re.compile( + r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') + +# Regular expression matching non-Japanese characters or punctuation marks: +_japanese_marks = re.compile( + r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') + +# List of (symbol, Japanese) pairs for marks: +_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [ + ('%', 'パーセント') +]] + +# List of (romaji, ipa) pairs for marks: +_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [ + ('ts', 'ʦ'), + ('u', 'ɯ'), + ('j', 'ʥ'), + ('y', 'j'), + ('ni', 'n^i'), + ('nj', 'n^'), + ('hi', 'çi'), + ('hj', 'ç'), + ('f', 'ɸ'), + ('I', 'i*'), + ('U', 'ɯ*'), + ('r', 'ɾ') +]] + +# List of (romaji, ipa2) pairs for marks: +_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [ + ('u', 'ɯ'), + ('ʧ', 'tʃ'), + ('j', 'dʑ'), + ('y', 'j'), + ('ni', 'n^i'), + ('nj', 'n^'), + ('hi', 'çi'), + ('hj', 'ç'), + ('f', 'ɸ'), + ('I', 'i*'), + ('U', 'ɯ*'), + ('r', 'ɾ') +]] + +# List of (consonant, sokuon) pairs: +_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [ + (r'Q([↑↓]*[kg])', r'k#\1'), + (r'Q([↑↓]*[tdjʧ])', r't#\1'), + (r'Q([↑↓]*[sʃ])', r's\1'), + (r'Q([↑↓]*[pb])', r'p#\1') +]] + +# List of (consonant, hatsuon) pairs: +_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [ + (r'N([↑↓]*[pbm])', r'm\1'), + (r'N([↑↓]*[ʧʥj])', r'n^\1'), + (r'N([↑↓]*[tdn])', r'n\1'), + (r'N([↑↓]*[kg])', r'ŋ\1') +]] + + +def symbols_to_japanese(text): + for regex, replacement in _symbols_to_japanese: + text = re.sub(regex, replacement, text) + return text + + +def japanese_to_romaji_with_accent(text): + '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html''' + text = symbols_to_japanese(text) + sentences = re.split(_japanese_marks, text) + marks = re.findall(_japanese_marks, text) + text = '' + for i, sentence in enumerate(sentences): + if re.match(_japanese_characters, sentence): + if text != '': + text += ' ' + labels = pyopenjtalk.extract_fullcontext(sentence) + for n, label in enumerate(labels): + phoneme = re.search(r'\-([^\+]*)\+', label).group(1) + if phoneme not in ['sil', 'pau']: + text += phoneme.replace('ch', 'ʧ').replace('sh', + 'ʃ').replace('cl', 'Q') + else: + continue + # n_moras = int(re.search(r'/F:(\d+)_', label).group(1)) + a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1)) + a2 = int(re.search(r"\+(\d+)\+", label).group(1)) + a3 = int(re.search(r"\+(\d+)/", label).group(1)) + if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']: + a2_next = -1 + else: + a2_next = int( + re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) + # Accent phrase boundary + if a3 == 1 and a2_next == 1: + text += ' ' + # Falling + elif a1 == 0 and a2_next == a2 + 1: + text += '↓' + # Rising + elif a2 == 1 and a2_next == 2: + text += '↑' + if i < len(marks): + text += unidecode(marks[i]).replace(' ', '') + return text + + +def get_real_sokuon(text): + for regex, replacement in _real_sokuon: + text = re.sub(regex, replacement, text) + return text + + +def get_real_hatsuon(text): + for regex, replacement in _real_hatsuon: + text = re.sub(regex, replacement, text) + return text + + +def japanese_to_ipa(text): + text = japanese_to_romaji_with_accent(text).replace('...', '…') + text = re.sub( + r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text) + text = get_real_sokuon(text) + text = get_real_hatsuon(text) + for regex, replacement in _romaji_to_ipa: + text = re.sub(regex, replacement, text) + return text + + +def japanese_to_ipa2(text): + text = japanese_to_romaji_with_accent(text).replace('...', '…') + text = get_real_sokuon(text) + text = get_real_hatsuon(text) + for regex, replacement in _romaji_to_ipa2: + text = re.sub(regex, replacement, text) + return text + + +def japanese_to_ipa3(text): + text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace( + 'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a') + text = re.sub( + r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text) + text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text) + return text diff --git a/text/symbols.py b/text/symbols.py new file mode 100644 index 0000000..ce7d043 --- /dev/null +++ b/text/symbols.py @@ -0,0 +1,15 @@ +''' +Defines the set of symbols used in text input to the model. +''' + +_pad = '_' +_punctuation = ',.!?-~…' +_letters = 'AEINOQUabdefghijklmnoprstuvwyzʃʧʦɯɹəɥ⁼ʰ`→↓↑ ' + + + +# Export all symbols: +symbols = [_pad] + list(_punctuation) + list(_letters) + +# Special symbol ids +SPACE_ID = symbols.index(" ") diff --git a/train.py b/train.py new file mode 100644 index 0000000..4dff8b2 --- /dev/null +++ b/train.py @@ -0,0 +1,301 @@ +import os +import json +import argparse +import itertools +import math +import torch +from torch import nn, optim +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torch.utils.tensorboard import SummaryWriter +import torch.multiprocessing as mp +import torch.distributed as dist +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.cuda.amp import autocast, GradScaler + +import librosa +import logging + +logging.getLogger('numba').setLevel(logging.WARNING) + +import commons +import utils +from data_utils import ( + TextAudioLoader, + TextAudioCollate, + DistributedBucketSampler +) +from models import ( + SynthesizerTrn, + MultiPeriodDiscriminator, +) +from losses import ( + generator_loss, + discriminator_loss, + feature_loss, + kl_loss +) +from mel_processing import mel_spectrogram_torch, spec_to_mel_torch +from text.symbols import symbols + + +torch.backends.cudnn.benchmark = True +global_step = 0 + + +def main(): + """Assume Single Node Multi GPUs Training Only""" + assert torch.cuda.is_available(), "CPU training is not allowed." + + n_gpus = torch.cuda.device_count() + os.environ['MASTER_ADDR'] = 'localhost' + os.environ['MASTER_PORT'] = '8000' + + hps = utils.get_hparams() + mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) + + +def run(rank, n_gpus, hps): + global global_step + if rank == 0: + logger = utils.get_logger(hps.model_dir) + logger.info(hps) + utils.check_git_hash(hps.model_dir) + writer = SummaryWriter(log_dir=hps.model_dir) + writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) + + dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank) + torch.manual_seed(hps.train.seed) + torch.cuda.set_device(rank) + + train_dataset = TextAudioLoader(hps.data.training_files, hps.data) + train_sampler = DistributedBucketSampler( + train_dataset, + hps.train.batch_size, + [32,300,400,500,600,700,800,900,1000], + num_replicas=n_gpus, + rank=rank, + shuffle=True) + collate_fn = TextAudioCollate() + train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True, + collate_fn=collate_fn, batch_sampler=train_sampler) + if rank == 0: + eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data) + eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False, + batch_size=hps.train.batch_size, pin_memory=True, + drop_last=False, collate_fn=collate_fn) + + net_g = SynthesizerTrn( + len(symbols), + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + **hps.model).cuda(rank) + net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) + optim_g = torch.optim.AdamW( + net_g.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + optim_d = torch.optim.AdamW( + net_d.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + net_g = DDP(net_g, device_ids=[rank]) + net_d = DDP(net_d, device_ids=[rank]) + + try: + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g) + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d) + global_step = (epoch_str - 1) * len(train_loader) + except: + epoch_str = 1 + global_step = 0 + + scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) + scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) + + scaler = GradScaler(enabled=hps.train.fp16_run) + + for epoch in range(epoch_str, hps.train.epochs + 1): + if rank==0: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) + else: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) + scheduler_g.step() + scheduler_d.step() + + +def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): + net_g, net_d = nets + optim_g, optim_d = optims + scheduler_g, scheduler_d = schedulers + train_loader, eval_loader = loaders + if writers is not None: + writer, writer_eval = writers + + train_loader.batch_sampler.set_epoch(epoch) + global global_step + + net_g.train() + net_d.train() + for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader): + x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True) + spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True) + y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) + + with autocast(enabled=hps.train.fp16_run): + y_hat, l_length, attn, ids_slice, x_mask, z_mask,\ + (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths) + + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + + y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice + + # Discriminator + y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) + with autocast(enabled=False): + loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) + loss_disc_all = loss_disc + optim_d.zero_grad() + scaler.scale(loss_disc_all).backward() + scaler.unscale_(optim_d) + grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) + scaler.step(optim_d) + + with autocast(enabled=hps.train.fp16_run): + # Generator + y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) + with autocast(enabled=False): + loss_dur = torch.sum(l_length.float()) + loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel + loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl + + loss_fm = feature_loss(fmap_r, fmap_g) + loss_gen, losses_gen = generator_loss(y_d_hat_g) + loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + optim_g.zero_grad() + scaler.scale(loss_gen_all).backward() + scaler.unscale_(optim_g) + grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) + scaler.step(optim_g) + scaler.update() + + if rank==0: + if global_step % hps.train.log_interval == 0: + lr = optim_g.param_groups[0]['lr'] + losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] + logger.info('Train Epoch: {} [{:.0f}%]'.format( + epoch, + 100. * batch_idx / len(train_loader))) + logger.info([x.item() for x in losses] + [global_step, lr]) + + scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} + scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl}) + + scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) + scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) + scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) + image_dict = { + "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), + "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), + "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), + "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy()) + } + utils.summarize( + writer=writer, + global_step=global_step, + images=image_dict, + scalars=scalar_dict) + + if global_step % hps.train.eval_interval == 0: + evaluate(hps, net_g, eval_loader, writer_eval) + utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) + utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) + old_g=os.path.join(hps.model_dir, "G_{}.pth".format(global_step-2000)) + old_d=os.path.join(hps.model_dir, "D_{}.pth".format(global_step-2000)) + if os.path.exists(old_g): + os.remove(old_g) + if os.path.exists(old_d): + os.remove(old_d) + global_step += 1 + + if rank == 0: + logger.info('====> Epoch: {}'.format(epoch)) + + +def evaluate(hps, generator, eval_loader, writer_eval): + generator.eval() + with torch.no_grad(): + for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader): + x, x_lengths = x.cuda(0), x_lengths.cuda(0) + spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0) + y, y_lengths = y.cuda(0), y_lengths.cuda(0) + + # remove else + x = x[:1] + x_lengths = x_lengths[:1] + spec = spec[:1] + spec_lengths = spec_lengths[:1] + y = y[:1] + y_lengths = y_lengths[:1] + break + y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000) + y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length + + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1).float(), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + image_dict = { + "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()) + } + audio_dict = { + "gen/audio": y_hat[0,:,:y_hat_lengths[0]] + } + if global_step == 0: + image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}) + audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]}) + + utils.summarize( + writer=writer_eval, + global_step=global_step, + images=image_dict, + audios=audio_dict, + audio_sampling_rate=hps.data.sampling_rate + ) + generator.train() + + +if __name__ == "__main__": + main() diff --git a/train_ms.py b/train_ms.py new file mode 100644 index 0000000..fad138d --- /dev/null +++ b/train_ms.py @@ -0,0 +1,305 @@ +import os +import json +import argparse +import itertools +import math +import torch +from torch import nn, optim +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torch.utils.tensorboard import SummaryWriter +import torch.multiprocessing as mp +import torch.distributed as dist +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.cuda.amp import autocast, GradScaler + +import librosa +import logging + +logging.getLogger('numba').setLevel(logging.WARNING) + +import commons +import utils +from data_utils import ( + TextAudioSpeakerLoader, + TextAudioSpeakerCollate, + DistributedBucketSampler +) +from models import ( + SynthesizerTrn, + MultiPeriodDiscriminator, +) +from losses import ( + generator_loss, + discriminator_loss, + feature_loss, + kl_loss +) +from mel_processing import mel_spectrogram_torch, spec_to_mel_torch +from text.symbols import symbols + + +torch.backends.cudnn.benchmark = True +global_step = 0 + + +def main(): + """Assume Single Node Multi GPUs Training Only""" + assert torch.cuda.is_available(), "CPU training is not allowed." + + n_gpus = torch.cuda.device_count() + os.environ['MASTER_ADDR'] = 'localhost' + os.environ['MASTER_PORT'] = '8000' + + hps = utils.get_hparams() + mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) + + +def run(rank, n_gpus, hps): + global global_step + if rank == 0: + logger = utils.get_logger(hps.model_dir) + logger.info(hps) + utils.check_git_hash(hps.model_dir) + writer = SummaryWriter(log_dir=hps.model_dir) + writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) + + dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank) + torch.manual_seed(hps.train.seed) + torch.cuda.set_device(rank) + + train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data) + train_sampler = DistributedBucketSampler( + train_dataset, + hps.train.batch_size, + [32,300,400,500,600,700,800,900,1000], + num_replicas=n_gpus, + rank=rank, + shuffle=True) + collate_fn = TextAudioSpeakerCollate() + train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True, + collate_fn=collate_fn, batch_sampler=train_sampler) + if rank == 0: + eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data) + eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False, + batch_size=hps.train.batch_size, pin_memory=True, + drop_last=False, collate_fn=collate_fn) + + net_g = SynthesizerTrn( + len(symbols), + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + n_speakers=hps.data.n_speakers, + **hps.model).cuda(rank) + net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) + optim_g = torch.optim.AdamW( + net_g.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + optim_d = torch.optim.AdamW( + net_d.parameters(), + hps.train.learning_rate, + betas=hps.train.betas, + eps=hps.train.eps) + net_g = DDP(net_g, device_ids=[rank]) + net_d = DDP(net_d, device_ids=[rank]) + + try: + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g) + _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d) + global_step = (epoch_str - 1) * len(train_loader) + except: + epoch_str = 1 + global_step = 0 + + scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) + scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) + + scaler = GradScaler(enabled=hps.train.fp16_run) + + for epoch in range(epoch_str, hps.train.epochs + 1): + if rank==0: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) + else: + train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) + scheduler_g.step() + scheduler_d.step() + + +def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): + net_g, net_d = nets + optim_g, optim_d = optims + scheduler_g, scheduler_d = schedulers + train_loader, eval_loader = loaders + if writers is not None: + writer, writer_eval = writers + + train_loader.batch_sampler.set_epoch(epoch) + global global_step + + net_g.train() + net_d.train() + for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader): + x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True) + spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True) + y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) + speakers = speakers.cuda(rank, non_blocking=True) + + with autocast(enabled=hps.train.fp16_run): + y_hat, l_length, attn, ids_slice, x_mask, z_mask,\ + (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers) + + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + + y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice + + # Discriminator + y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) + with autocast(enabled=False): + loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) + loss_disc_all = loss_disc + optim_d.zero_grad() + scaler.scale(loss_disc_all).backward() + scaler.unscale_(optim_d) + grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) + scaler.step(optim_d) + + with autocast(enabled=hps.train.fp16_run): + # Generator + y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) + with autocast(enabled=False): + loss_dur = torch.sum(l_length.float()) + loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel + loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl + + loss_fm = feature_loss(fmap_r, fmap_g) + loss_gen, losses_gen = generator_loss(y_d_hat_g) + loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + optim_g.zero_grad() + scaler.scale(loss_gen_all).backward() + scaler.unscale_(optim_g) + grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) + scaler.step(optim_g) + scaler.update() + + if rank==0: + if global_step % hps.train.log_interval == 0: + lr = optim_g.param_groups[0]['lr'] + losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] + logger.info('Train Epoch: {} [{:.0f}%]'.format( + epoch, + 100. * batch_idx / len(train_loader))) + logger.info([x.item() for x in losses] + [global_step, lr]) + + scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} + scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl}) + + scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) + scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) + scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) + image_dict = { + "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), + "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), + "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), + "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy()) + } + utils.summarize( + writer=writer, + global_step=global_step, + images=image_dict, + scalars=scalar_dict) + + if global_step % hps.train.eval_interval == 0: + evaluate(hps, net_g, eval_loader, writer_eval) + utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) + utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) + old_g=os.path.join(hps.model_dir, "G_{}.pth".format(global_step-2000)) + old_d=os.path.join(hps.model_dir, "D_{}.pth".format(global_step-2000)) + if os.path.exists(old_g): + os.remove(old_g) + if os.path.exists(old_d): + os.remove(old_d) + global_step += 1 + + if rank == 0: + logger.info('====> Epoch: {}'.format(epoch)) + + +def evaluate(hps, generator, eval_loader, writer_eval): + generator.eval() + with torch.no_grad(): + for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader): + x, x_lengths = x.cuda(0), x_lengths.cuda(0) + spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0) + y, y_lengths = y.cuda(0), y_lengths.cuda(0) + speakers = speakers.cuda(0) + + # remove else + x = x[:1] + x_lengths = x_lengths[:1] + spec = spec[:1] + spec_lengths = spec_lengths[:1] + y = y[:1] + y_lengths = y_lengths[:1] + speakers = speakers[:1] + break + y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000) + y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length + + mel = spec_to_mel_torch( + spec, + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.mel_fmin, + hps.data.mel_fmax) + y_hat_mel = mel_spectrogram_torch( + y_hat.squeeze(1).float(), + hps.data.filter_length, + hps.data.n_mel_channels, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + hps.data.mel_fmin, + hps.data.mel_fmax + ) + image_dict = { + "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()) + } + audio_dict = { + "gen/audio": y_hat[0,:,:y_hat_lengths[0]] + } + if global_step == 0: + image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}) + audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]}) + + utils.summarize( + writer=writer_eval, + global_step=global_step, + images=image_dict, + audios=audio_dict, + audio_sampling_rate=hps.data.sampling_rate + ) + generator.train() + + +if __name__ == "__main__": + main() diff --git a/transforms.py b/transforms.py new file mode 100644 index 0000000..4793d67 --- /dev/null +++ b/transforms.py @@ -0,0 +1,193 @@ +import torch +from torch.nn import functional as F + +import numpy as np + + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = { + 'tails': tails, + 'tail_bound': tail_bound + } + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum( + inputs[..., None] >= bin_locations, + dim=-1 + ) - 1 + + +def unconstrained_rational_quadratic_spline(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails='linear', + tail_bound=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == 'linear': + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError('{} tails are not implemented.'.format(tails)) + + outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative + ) + + return outputs, logabsdet + +def rational_quadratic_spline(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0., right=1., bottom=0., top=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError('Input to a transform is not within its domain') + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError('Minimal bin width too large for the number of bins') + if min_bin_height * num_bins > 1.0: + raise ValueError('Minimal bin height too large for the number of bins') + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (((inputs - input_cumheights) * (input_derivatives + + input_derivatives_plus_one + - 2 * input_delta) + + input_heights * (input_delta - input_derivatives))) + b = (input_heights * input_derivatives + - (inputs - input_cumheights) * (input_derivatives + + input_derivatives_plus_one + - 2 * input_delta)) + c = - input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta) + derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2)) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * (input_delta * theta.pow(2) + + input_derivatives * theta_one_minus_theta) + denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2)) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet diff --git a/utils.py b/utils.py new file mode 100644 index 0000000..28b7aef --- /dev/null +++ b/utils.py @@ -0,0 +1,259 @@ +import os +import glob +import sys +import argparse +import logging +import json +import subprocess +import numpy as np +from scipy.io.wavfile import read +import torch + +MATPLOTLIB_FLAG = False + +logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) +logger = logging + + +def load_checkpoint(checkpoint_path, model, optimizer=None): + assert os.path.isfile(checkpoint_path) + checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') + iteration = checkpoint_dict['iteration'] + learning_rate = checkpoint_dict['learning_rate'] + if optimizer is not None: + optimizer.load_state_dict(checkpoint_dict['optimizer']) + saved_state_dict = checkpoint_dict['model'] + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + new_state_dict= {} + for k, v in state_dict.items(): + try: + new_state_dict[k] = saved_state_dict[k] + except: + logger.info("%s is not in the checkpoint" % k) + new_state_dict[k] = v + if hasattr(model, 'module'): + model.module.load_state_dict(new_state_dict) + else: + model.load_state_dict(new_state_dict) + logger.info("Loaded checkpoint '{}' (iteration {})" .format( + checkpoint_path, iteration)) + return model, optimizer, learning_rate, iteration + + +def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): + logger.info("Saving model and optimizer state at iteration {} to {}".format( + iteration, checkpoint_path)) + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + torch.save({'model': state_dict, + 'iteration': iteration, + 'optimizer': optimizer.state_dict(), + 'learning_rate': learning_rate}, checkpoint_path) + + +def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): + for k, v in scalars.items(): + writer.add_scalar(k, v, global_step) + for k, v in histograms.items(): + writer.add_histogram(k, v, global_step) + for k, v in images.items(): + writer.add_image(k, v, global_step, dataformats='HWC') + for k, v in audios.items(): + writer.add_audio(k, v, global_step, audio_sampling_rate) + + +def latest_checkpoint_path(dir_path, regex="G_*.pth"): + f_list = glob.glob(os.path.join(dir_path, regex)) + f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) + x = f_list[-1] + print(x) + return x + + +def plot_spectrogram_to_numpy(spectrogram): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(10,2)) + im = ax.imshow(spectrogram, aspect="auto", origin="lower", + interpolation='none') + plt.colorbar(im, ax=ax) + plt.xlabel("Frames") + plt.ylabel("Channels") + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def plot_alignment_to_numpy(alignment, info=None): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(6, 4)) + im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', + interpolation='none') + fig.colorbar(im, ax=ax) + xlabel = 'Decoder timestep' + if info is not None: + xlabel += '\n\n' + info + plt.xlabel(xlabel) + plt.ylabel('Encoder timestep') + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def load_wav_to_torch(full_path): + sampling_rate, data = read(full_path) + return torch.FloatTensor(data.astype(np.float32)), sampling_rate + + +def load_filepaths_and_text(filename, split="|"): + with open(filename, encoding='utf-8') as f: + filepaths_and_text = [line.strip().split(split) for line in f] + return filepaths_and_text + + +def get_hparams(init=True): + parser = argparse.ArgumentParser() + parser.add_argument('-c', '--config', type=str, default="./configs/base.json", + help='JSON file for configuration') + parser.add_argument('-m', '--model', type=str, required=True, + help='Model name') + + args = parser.parse_args() + model_dir = "../drive/MyDrive/vits-finetune" + model_dir = os.path.join(model_dir, args.model) + + if not os.path.exists(model_dir): + os.makedirs(model_dir) + + config_path = args.config + config_save_path = os.path.join(model_dir, "config.json") + if init: + with open(config_path, "r") as f: + data = f.read() + with open(config_save_path, "w") as f: + f.write(data) + else: + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams = HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_dir(model_dir): + config_save_path = os.path.join(model_dir, "config.json") + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_file(config_path): + with open(config_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + return hparams + + +def check_git_hash(model_dir): + source_dir = os.path.dirname(os.path.realpath(__file__)) + if not os.path.exists(os.path.join(source_dir, ".git")): + logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( + source_dir + )) + return + + cur_hash = subprocess.getoutput("git rev-parse HEAD") + + path = os.path.join(model_dir, "githash") + if os.path.exists(path): + saved_hash = open(path).read() + if saved_hash != cur_hash: + logger.warn("git hash values are different. {}(saved) != {}(current)".format( + saved_hash[:8], cur_hash[:8])) + else: + open(path, "w").write(cur_hash) + + +def get_logger(model_dir, filename="train.log"): + global logger + logger = logging.getLogger(os.path.basename(model_dir)) + logger.setLevel(logging.DEBUG) + + formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") + if not os.path.exists(model_dir): + os.makedirs(model_dir) + h = logging.FileHandler(os.path.join(model_dir, filename)) + h.setLevel(logging.DEBUG) + h.setFormatter(formatter) + logger.addHandler(h) + return logger + + +class HParams(): + def __init__(self, **kwargs): + for k, v in kwargs.items(): + if type(v) == dict: + v = HParams(**v) + self[k] = v + + def keys(self): + return self.__dict__.keys() + + def items(self): + return self.__dict__.items() + + def values(self): + return self.__dict__.values() + + def __len__(self): + return len(self.__dict__) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, value): + return setattr(self, key, value) + + def __contains__(self, key): + return key in self.__dict__ + + def __repr__(self): + return self.__dict__.__repr__() diff --git a/wav/ba/miyu/124180.wav b/wav/ba/miyu/124180.wav new file mode 100644 index 0000000..e1375ad Binary files /dev/null and b/wav/ba/miyu/124180.wav differ diff --git a/wav/ba/miyu/130233.wav b/wav/ba/miyu/130233.wav new file mode 100644 index 0000000..350c3bc Binary files /dev/null and b/wav/ba/miyu/130233.wav differ diff --git a/wav/ba/miyu/139528.wav b/wav/ba/miyu/139528.wav new file mode 100644 index 0000000..baa3140 Binary files /dev/null and b/wav/ba/miyu/139528.wav differ diff --git a/wav/ba/miyu/145077.wav b/wav/ba/miyu/145077.wav new file mode 100644 index 0000000..aa4415d Binary files /dev/null and b/wav/ba/miyu/145077.wav differ diff --git a/wav/ba/miyu/147691.wav b/wav/ba/miyu/147691.wav new file mode 100644 index 0000000..c693dd1 Binary files /dev/null and b/wav/ba/miyu/147691.wav differ diff --git a/wav/ba/miyu/155037.wav b/wav/ba/miyu/155037.wav new file mode 100644 index 0000000..7c14b90 Binary files /dev/null and b/wav/ba/miyu/155037.wav differ diff --git a/wav/ba/miyu/164427.wav b/wav/ba/miyu/164427.wav new file mode 100644 index 0000000..4de5ed8 Binary files /dev/null and b/wav/ba/miyu/164427.wav differ diff --git a/wav/ba/miyu/173043.wav b/wav/ba/miyu/173043.wav new file mode 100644 index 0000000..314c74f Binary files /dev/null and b/wav/ba/miyu/173043.wav differ diff --git a/wav/ba/miyu/211336.wav b/wav/ba/miyu/211336.wav new file mode 100644 index 0000000..6e1206a Binary files /dev/null and b/wav/ba/miyu/211336.wav differ diff --git a/wav/ba/miyu/255333.wav b/wav/ba/miyu/255333.wav new file mode 100644 index 0000000..c9de4d2 Binary files /dev/null and b/wav/ba/miyu/255333.wav differ diff --git a/wav/ba/miyu/29571.wav b/wav/ba/miyu/29571.wav new file mode 100644 index 0000000..75ff827 Binary files /dev/null and b/wav/ba/miyu/29571.wav differ diff --git a/wav/ba/miyu/306949.wav b/wav/ba/miyu/306949.wav new file mode 100644 index 0000000..9954863 Binary files /dev/null and b/wav/ba/miyu/306949.wav differ diff --git a/wav/ba/miyu/318631.wav b/wav/ba/miyu/318631.wav new file mode 100644 index 0000000..1d10d7e Binary files /dev/null and b/wav/ba/miyu/318631.wav differ diff --git a/wav/ba/miyu/356351.wav b/wav/ba/miyu/356351.wav new file mode 100644 index 0000000..886aef9 Binary files /dev/null and b/wav/ba/miyu/356351.wav differ diff --git a/wav/ba/miyu/379056.wav b/wav/ba/miyu/379056.wav new file mode 100644 index 0000000..734f4ad Binary files /dev/null and b/wav/ba/miyu/379056.wav differ diff --git a/wav/ba/miyu/387627.wav b/wav/ba/miyu/387627.wav new file mode 100644 index 0000000..5e2e8ac Binary files /dev/null and b/wav/ba/miyu/387627.wav differ diff --git a/wav/ba/miyu/389580.wav b/wav/ba/miyu/389580.wav new file mode 100644 index 0000000..2b2eb4a Binary files /dev/null and b/wav/ba/miyu/389580.wav differ diff --git a/wav/ba/miyu/39192.wav b/wav/ba/miyu/39192.wav new file mode 100644 index 0000000..3f65d2e Binary files /dev/null and b/wav/ba/miyu/39192.wav differ diff --git a/wav/ba/miyu/412781.wav b/wav/ba/miyu/412781.wav new file mode 100644 index 0000000..f96b572 Binary files /dev/null and b/wav/ba/miyu/412781.wav differ diff --git a/wav/ba/miyu/41287.wav b/wav/ba/miyu/41287.wav new file mode 100644 index 0000000..9c1f01e Binary files /dev/null and b/wav/ba/miyu/41287.wav differ diff --git a/wav/ba/miyu/422295.wav b/wav/ba/miyu/422295.wav new file mode 100644 index 0000000..3fa7c78 Binary files /dev/null and b/wav/ba/miyu/422295.wav differ diff --git a/wav/ba/miyu/436322.wav b/wav/ba/miyu/436322.wav new file mode 100644 index 0000000..015d8e4 Binary files /dev/null and b/wav/ba/miyu/436322.wav differ diff --git a/wav/ba/miyu/44255.wav b/wav/ba/miyu/44255.wav new file mode 100644 index 0000000..00c81ad Binary files /dev/null and b/wav/ba/miyu/44255.wav differ diff --git a/wav/ba/miyu/450375.wav b/wav/ba/miyu/450375.wav new file mode 100644 index 0000000..3f7c911 Binary files /dev/null and b/wav/ba/miyu/450375.wav differ diff --git a/wav/ba/miyu/456869.wav b/wav/ba/miyu/456869.wav new file mode 100644 index 0000000..73bf1f4 Binary files /dev/null and b/wav/ba/miyu/456869.wav differ diff --git a/wav/ba/miyu/461433.wav b/wav/ba/miyu/461433.wav new file mode 100644 index 0000000..25c5d28 Binary files /dev/null and b/wav/ba/miyu/461433.wav differ diff --git a/wav/ba/miyu/472324.wav b/wav/ba/miyu/472324.wav new file mode 100644 index 0000000..7bc315c Binary files /dev/null and b/wav/ba/miyu/472324.wav differ diff --git a/wav/ba/miyu/527590.wav b/wav/ba/miyu/527590.wav new file mode 100644 index 0000000..c2d2dcb Binary files /dev/null and b/wav/ba/miyu/527590.wav differ diff --git a/wav/ba/miyu/533522.wav b/wav/ba/miyu/533522.wav new file mode 100644 index 0000000..cdc304d Binary files /dev/null and b/wav/ba/miyu/533522.wav differ diff --git a/wav/ba/miyu/536512.wav b/wav/ba/miyu/536512.wav new file mode 100644 index 0000000..dd533f8 Binary files /dev/null and b/wav/ba/miyu/536512.wav differ diff --git a/wav/ba/miyu/537029.wav b/wav/ba/miyu/537029.wav new file mode 100644 index 0000000..08d6d89 Binary files /dev/null and b/wav/ba/miyu/537029.wav differ diff --git a/wav/ba/miyu/554075.wav b/wav/ba/miyu/554075.wav new file mode 100644 index 0000000..895bdd4 Binary files /dev/null and b/wav/ba/miyu/554075.wav differ diff --git a/wav/ba/miyu/55566.wav b/wav/ba/miyu/55566.wav new file mode 100644 index 0000000..ccab2a9 Binary files /dev/null and b/wav/ba/miyu/55566.wav differ diff --git a/wav/ba/miyu/589002.wav b/wav/ba/miyu/589002.wav new file mode 100644 index 0000000..065f209 Binary files /dev/null and b/wav/ba/miyu/589002.wav differ diff --git a/wav/ba/miyu/616395.wav b/wav/ba/miyu/616395.wav new file mode 100644 index 0000000..7fe69f2 Binary files /dev/null and b/wav/ba/miyu/616395.wav differ diff --git a/wav/ba/miyu/618533.wav b/wav/ba/miyu/618533.wav new file mode 100644 index 0000000..866f1e5 Binary files /dev/null and b/wav/ba/miyu/618533.wav differ diff --git a/wav/ba/miyu/619085.wav b/wav/ba/miyu/619085.wav new file mode 100644 index 0000000..eb9a3f8 Binary files /dev/null and b/wav/ba/miyu/619085.wav differ diff --git a/wav/ba/miyu/643475.wav b/wav/ba/miyu/643475.wav new file mode 100644 index 0000000..92fbd64 Binary files /dev/null and b/wav/ba/miyu/643475.wav differ diff --git a/wav/ba/miyu/648148.wav b/wav/ba/miyu/648148.wav new file mode 100644 index 0000000..2802ab5 Binary files /dev/null and b/wav/ba/miyu/648148.wav differ diff --git a/wav/ba/miyu/649415.wav b/wav/ba/miyu/649415.wav new file mode 100644 index 0000000..b0c4cba Binary files /dev/null and b/wav/ba/miyu/649415.wav differ diff --git a/wav/ba/miyu/706012.wav b/wav/ba/miyu/706012.wav new file mode 100644 index 0000000..f3f3671 Binary files /dev/null and b/wav/ba/miyu/706012.wav differ diff --git a/wav/ba/miyu/709504.wav b/wav/ba/miyu/709504.wav new file mode 100644 index 0000000..e7fcca3 Binary files /dev/null and b/wav/ba/miyu/709504.wav differ diff --git a/wav/ba/miyu/712096.wav b/wav/ba/miyu/712096.wav new file mode 100644 index 0000000..b1f755b Binary files /dev/null and b/wav/ba/miyu/712096.wav differ diff --git a/wav/ba/miyu/714649.wav b/wav/ba/miyu/714649.wav new file mode 100644 index 0000000..96ee3f4 Binary files /dev/null and b/wav/ba/miyu/714649.wav differ diff --git a/wav/ba/miyu/749189.wav b/wav/ba/miyu/749189.wav new file mode 100644 index 0000000..34205f5 Binary files /dev/null and b/wav/ba/miyu/749189.wav differ diff --git a/wav/ba/miyu/750669.wav b/wav/ba/miyu/750669.wav new file mode 100644 index 0000000..4aaab18 Binary files /dev/null and b/wav/ba/miyu/750669.wav differ diff --git a/wav/ba/miyu/755180.wav b/wav/ba/miyu/755180.wav new file mode 100644 index 0000000..ab5e86e Binary files /dev/null and b/wav/ba/miyu/755180.wav differ diff --git a/wav/ba/miyu/805836.wav b/wav/ba/miyu/805836.wav new file mode 100644 index 0000000..7f666e1 Binary files /dev/null and b/wav/ba/miyu/805836.wav differ diff --git a/wav/ba/miyu/814441.wav b/wav/ba/miyu/814441.wav new file mode 100644 index 0000000..264658e Binary files /dev/null and b/wav/ba/miyu/814441.wav differ diff --git a/wav/ba/miyu/827005.wav b/wav/ba/miyu/827005.wav new file mode 100644 index 0000000..daf53b0 Binary files /dev/null and b/wav/ba/miyu/827005.wav differ diff --git a/wav/ba/miyu/829111.wav b/wav/ba/miyu/829111.wav new file mode 100644 index 0000000..10327f8 Binary files /dev/null and b/wav/ba/miyu/829111.wav differ diff --git a/wav/ba/miyu/861536.wav b/wav/ba/miyu/861536.wav new file mode 100644 index 0000000..bd7d132 Binary files /dev/null and b/wav/ba/miyu/861536.wav differ diff --git a/wav/ba/miyu/862032.wav b/wav/ba/miyu/862032.wav new file mode 100644 index 0000000..941db8c Binary files /dev/null and b/wav/ba/miyu/862032.wav differ diff --git a/wav/ba/miyu/872843.wav b/wav/ba/miyu/872843.wav new file mode 100644 index 0000000..4c19c74 Binary files /dev/null and b/wav/ba/miyu/872843.wav differ diff --git a/wav/ba/miyu/886881.wav b/wav/ba/miyu/886881.wav new file mode 100644 index 0000000..5188564 Binary files /dev/null and b/wav/ba/miyu/886881.wav differ diff --git a/wav/ba/miyu/899245.wav b/wav/ba/miyu/899245.wav new file mode 100644 index 0000000..54b0ec3 Binary files /dev/null and b/wav/ba/miyu/899245.wav differ diff --git a/wav/ba/miyu/902456.wav b/wav/ba/miyu/902456.wav new file mode 100644 index 0000000..d49f9ad Binary files /dev/null and b/wav/ba/miyu/902456.wav differ diff --git a/wav/ba/miyu/90758.wav b/wav/ba/miyu/90758.wav new file mode 100644 index 0000000..8015f7c Binary files /dev/null and b/wav/ba/miyu/90758.wav differ diff --git a/wav/ba/miyu/916145.wav b/wav/ba/miyu/916145.wav new file mode 100644 index 0000000..c4c2efb Binary files /dev/null and b/wav/ba/miyu/916145.wav differ diff --git a/wav/ba/miyu/930369.wav b/wav/ba/miyu/930369.wav new file mode 100644 index 0000000..7d417f7 Binary files /dev/null and b/wav/ba/miyu/930369.wav differ diff --git a/wav/ba/miyu/940433.wav b/wav/ba/miyu/940433.wav new file mode 100644 index 0000000..d2655c1 Binary files /dev/null and b/wav/ba/miyu/940433.wav differ diff --git a/wav/ba/miyu/946836.wav b/wav/ba/miyu/946836.wav new file mode 100644 index 0000000..fc781aa Binary files /dev/null and b/wav/ba/miyu/946836.wav differ diff --git a/wav/ba/miyu/955071.wav b/wav/ba/miyu/955071.wav new file mode 100644 index 0000000..6f511b6 Binary files /dev/null and b/wav/ba/miyu/955071.wav differ diff --git a/wav/ba/miyu/974397.wav b/wav/ba/miyu/974397.wav new file mode 100644 index 0000000..c61b5c8 Binary files /dev/null and b/wav/ba/miyu/974397.wav differ diff --git a/wav/ba/miyu/978431.wav b/wav/ba/miyu/978431.wav new file mode 100644 index 0000000..81ce208 Binary files /dev/null and b/wav/ba/miyu/978431.wav differ diff --git a/wav/ba/miyu/986967.wav b/wav/ba/miyu/986967.wav new file mode 100644 index 0000000..a369b40 Binary files /dev/null and b/wav/ba/miyu/986967.wav differ