-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprepro.py
456 lines (413 loc) · 18.1 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
import re
import json
import math
import random
from tqdm import tqdm
from pprint import pprint
import ipdb
"""
sample = {"text": text,
"entities": [{“entity”: str,
“label”: str,
“sub_label”: str,
"idx_start": int,
"idx_end": int},
...]
where, text[idx_start:idx_end] == entity.
"""
def unify_key():
d_new = dict()
d = {"症状": ["症状", "symptom", "sym", "症状"],
"病史": ["社会学"],
"症状_程度": ["feature"],
"症状_生理": ["physiology"],
"部位": ["解剖部位", "body", "bod", "部位"],
"检查": ["影像检查", "实验室检验", "ite", "test", "pro", "检查"],
"诊断": ["疾病和诊断", "disease", "dis", "疾病"],
"治疗": ["手术", "treatment", "手术治疗", "其他治疗"],
"药物": ["药物", "drug", "dru", "药物"],
"预后": ["预后"],
"器材": ["equ"],
"人群": ["crowd"],
"科室": ["department", "dep"],
"时间": ["time"],
"其他": ["mic", "流行病学", "其他"]}
for k, lst_v in d.items():
for v in lst_v:
d_new.update({v: k})
return d, d_new
D_RAW, D_CLASS = unify_key()
def find_index(s, w):
try:
idx_s, idx_e = re.search(w, s).span()
except:
idx_s, idx_e = None, None
return idx_s, idx_e
def update_dict(d, k, v):
if k in d.keys():
d[k].append(v)
d[k] = list(set(d[k]))
else:
d[k] = [v]
return d
def check_cEHRNER(load_dir="../raw_data/ner/cEHRNER/"):
global D_CLASS
d_key = dict()
lst_sample = list()
for load_file in ["train.json", "dev.json", "test.json"]:
print("Now operate the file - {}".format(load_file))
load_path = os.path.join(load_dir, load_file)
with open(load_path, "r") as f:
for line in tqdm(f.readlines()):
line = json.loads(line)
text = line.get("text", None)
lst_mention = line.get("mention_data")
lst_entity = list()
for d in lst_mention:
m_v = d.get("mention", None)
m_k = d.get("label", None)
if text and m_k and m_v:
d_key = update_dict(d_key, m_k, m_v)
sample_now = {"entity": m_v,
"label": D_CLASS.get(m_k, None),
"sub_label": m_k,
"idx_start": int(d.get("offset")),
"idx_end": int(d.get("offset")) + len(m_v)}
lst_entity.append(sample_now)
lst_sample.append({"text": text, "entities": lst_entity})
return d_key, lst_sample
def check_cMedQANER(load_dir="../raw_data/ner/cMedQANER/"):
global D_CLASS
d_key = dict()
lst_sample = list()
for load_file in ["train.json", "dev.json", "test.json"]:
print("Now operate the file - {}".format(load_file))
load_path = os.path.join(load_dir, load_file)
with open(load_path, "r") as f:
for line in tqdm(f.readlines()):
line = json.loads(line)
text = line.get("text", None)
lst_mention = line.get("mention_data")
lst_entity = list()
for d in lst_mention:
m_v = d.get("mention", None)
m_k = d.get("type", None)
if text and m_k and m_v:
d_key = update_dict(d_key, m_k, m_v)
sample_now = {"entity": m_v,
"label": D_CLASS.get(m_k, None),
"sub_label": m_k,
"idx_start": int(d.get("offset")),
"idx_end": int(d.get("offset")) + len(m_v)}
lst_entity.append(sample_now)
lst_sample.append({"text": text, "entities": lst_entity})
return d_key, lst_sample
def check_chip1(load_dir="../raw_data/ner/chip1/"):
global D_CLASS
d_key = dict()
lst_sample = list()
for load_file in ["train_data.txt", "val_data.txt"]:
print("Now operate the file - {}".format(load_file))
load_path = os.path.join(load_dir, load_file)
with open(load_path, "r") as f:
for line in tqdm(f.readlines()):
lst_line = line.split("|||")
text = lst_line[0]
lst_entity = list()
for mention in lst_line[1:-1]:
lst_mention = mention.split()
idx_s, idx_e, m_k = int(lst_mention[0]), int(lst_mention[1]), lst_mention[2]
m_v = text[idx_s:(idx_e+1)]
if text and m_k and m_v:
d_key = update_dict(d_key, m_k, m_v)
sample_now = {"entity": m_v,
"label": D_CLASS.get(m_k, None),
"sub_label": m_k,
"idx_start": idx_s,
"idx_end": idx_e+1} # note: index bias exists in this case
lst_entity.append(sample_now)
lst_sample.append({"text": text, "entities": lst_entity})
return d_key, lst_sample
def check_chip2(load_dir="../raw_data/ner/chip2/"):
global D_CLASS
d_key = dict()
lst_sample = list()
for load_file in ["train_data.json", "val_data.json"]:
print("Now operate the file - {}".format(load_file))
load_path = os.path.join(load_dir, load_file)
with open(load_path, "r") as f:
for line in tqdm(f.readlines()):
line = json.loads(line)
text = line.get("text", None)
lst_mention = line.get("spo_list")
lst_entity = list()
for d in lst_mention:
m_k_1 = d.get("subject_type", None)
m_v_1 = d.get("subject", None)
m_k_2 = d.get("object_type", None).get("@value", None)
m_v_2 = d.get("object", {}).get("@value", None)
if text:
if m_k_1 and m_v_1:
d_key = update_dict(d_key, m_k_1, m_v_1)
idx_s, idx_e = find_index(text, m_v_1)
if idx_s and idx_e:
sample_now = {"entity": m_v_1,
"label": D_CLASS.get(m_k_1, None),
"sub_label": m_k_1,
"idx_start": idx_s,
"idx_end": idx_e}
lst_entity.append(sample_now)
if m_k_2 and m_v_2:
d_key = update_dict(d_key, m_k_2, m_v_2)
idx_s, idx_e = find_index(text, m_v_2)
if idx_s and idx_e:
sample_now = {"entity": m_v_2,
"label": D_CLASS.get(m_k_2, None),
"sub_label": m_k_2,
"idx_start": idx_s,
"idx_end": idx_e}
lst_entity.append(sample_now)
lst_sample.append({"text": text, "entities": lst_entity})
return d_key, lst_sample
def check_YiduS4K(load_dir="../raw_data/ner/YiduS4K/"):
global D_CLASS
d_key = dict()
lst_sample = list()
for load_file in ["subtask1_training_part1.txt", "subtask1_training_part2.txt", "subtask1_test_set_with_answer.txt"]:
print("Now operate the file - {}".format(load_file))
load_path = os.path.join(load_dir, load_file)
with open(load_path, "r") as f:
for line in tqdm(f.readlines()):
line = line.encode('utf8').decode('utf-8-sig')
try:
line = json.loads(line)
except:
continue
text = line.get("originalText", None)
lst_mention = line.get("entities")
lst_entity = list()
for d in lst_mention:
idx_s, idx_e = d.get("start_pos", None), d.get("end_pos", None)
m_v = text[idx_s: idx_e] if text and idx_s and idx_e else None
m_k = d.get("label_type", None)
if text and m_k and m_v:
d_key = update_dict(d_key, m_k, m_v)
sample_now = {"entity": m_v,
"label": D_CLASS.get(m_k, None),
"sub_label": m_k,
"idx_start": idx_s,
"idx_end": idx_e} # note: index bias exists in this case
lst_entity.append(sample_now)
lst_sample.append({"text": text, "entities": lst_entity})
return d_key, lst_sample
def check_label():
print("******************** Check original datasets' labels ******************** ")
def pretty_str(s):
s = str(s)
return s.split("at")[0].replace("<function check_", "").strip()
lst_f = [check_cEHRNER, check_cMedQANER, check_chip1, check_chip2, check_YiduS4K]
lst = list()
for f in lst_f:
d = f()[0]
for d_k, d_v in d.items():
lst.append([pretty_str(f), d_k, d_v[0], d_v[1], d_v[2], d_v[3], d_v[4]])
for i in lst:
print("{}, \t key: {}, \t value: {}, {}, {}, {}, {}".format(i[0], i[1], i[2], i[3], i[4], i[5], i[6]))
return None
def combine_dict(save_path="ner_all.json"):
print("******************** Combine the original datasets ******************** ")
lst_f = [check_cEHRNER, check_cMedQANER, check_chip1, check_chip2, check_YiduS4K]
lst = list()
for f in tqdm(lst_f):
lst.extend(f()[1])
if isinstance(save_path, str) and save_path.endswith(".json"):
with open(save_path, 'w') as f:
json.dump(lst, f, ensure_ascii=False, indent=4)
print("Succeed to save, 5 examples are shown below:")
pprint(lst[-5:])
else:
print("Fail to save, wrong saving path.")
return lst
def statistic_info(data_now=None):
print("******************** Statistic Info about the combined dataset ******************** ")
global D_RAW
# load file
if isinstance(data_now, str) and data_now.endswith(".json"):
with open(data_now, "r") as f:
lst = json.load(f)
elif isinstance(data_now, list):
lst = data_now
else:
return None, None, None, None
# initialize dictionary
d_type = {k: 0 for k, v in D_RAW.items()}
d_type.update({"未知": 0})
avg_text_len = 0
# count
size_sample = len(lst)
size_entity = sum(len(d.get("entities")) for d in lst)
for i_sample, sample in enumerate(lst):
avg_text_len += len(sample.get("text", ""))
for d in sample.get("entities"):
try:
d_type[d.get("label")] += 1
except:
d_type["未知"] += 1
avg_text_len = avg_text_len/float(i_sample)
print("Distribution of labels:")
pprint(d_type)
print()
print("Sample Size: {}| Entity Size: {}| Average Text Length: {:.2f}".format(size_sample, size_entity, avg_text_len))
return size_sample, size_entity, d_type, avg_text_len
def prettify_data(data_now=None, save_path="ner_all_new.json"):
print("******************** Prettify the combined dataset ******************** ")
# load file
if isinstance(data_now, str) and data_now.endswith(".json"):
with open(data_now, "r") as f:
lst = json.load(f)
elif isinstance(data_now, list):
lst = data_now
else:
return None, None
# get dict_entity = {mention:{mention_label_1: count, mention_label_2: count, ...}}
print("Generate dict_entity ...")
dict_entity = dict()
for sample in tqdm(lst):
entities = sample.get("entities")
for d in entities:
entity_now, label_now = d.get("entity"), d.get("label")
if entity_now in dict_entity.keys():
if label_now in dict_entity[entity_now].keys():
dict_entity[entity_now][label_now] += 1
else:
dict_entity[entity_now][label_now] = 1
else:
dict_entity[entity_now] = {label_now: 1}
# dict_entity -> {mention: mention_label, ...}
for d_k, d_v in dict_entity.items():
dict_entity[d_k] = max(d_v, key=lambda k: d_v[k])
# prettify entity mention in data (add missing mention / correct label)
print("Update the original data ...")
for i_sample, sample in enumerate(tqdm(lst)):
text = sample.get("text")
entities = sample.get("entities")
text_tag = "0" * len(text)
for i_d, d in enumerate(entities):
if dict_entity.get(d.get("entity"), None):
lst[i_sample]["entities"][i_d]["label"] = dict_entity[d.get("entity")] # unify label
text_tag = text_tag[:d.get("idx_start")] + \
"1" * (d.get("idx_end") - d.get("idx_start")) + \
text_tag[d.get("idx_end"):] # record tag
for mention, mention_label in dict_entity.items():
try:
iter_match = re.finditer(mention, text)
except:
continue
for match in iter_match:
if match.span():
if "1" in text_tag[match.start(): match.end()]: # find and add the new entity
continue
else:
text_tag = text_tag[:match.start()] + "1" * (match.end() - match.start()) + text_tag[match.end():]
entity_new = {"entity": mention,
"label": mention_label,
"sub_label": "新增术语",
"idx_start": match.start(),
"idx_end": match.end()}
lst[i_sample]["entities"].append(entity_new)
# save updated lst
print("Save the updated data ...")
if isinstance(save_path, str) and save_path.endswith(".json"):
with open(save_path, 'w') as f:
json.dump(lst, f, ensure_ascii=False, indent=4)
print("Succed to save.")
else:
print("Fail to save, wrong saving path.")
return lst, dict_entity
def remove_one_token(data_now=None):
print("******************** Remove token with length=1 (Optional) ******************** ")
# load file
if isinstance(data_now, str) and data_now.endswith(".json"):
with open(data_now, "r") as f:
lst = json.load(f)
elif isinstance(data_now, list):
lst = data_now
else:
return None
# delete one-char entities
count_one = 0
count_all = 0
for i_sample, sample in enumerate(tqdm(lst)):
for i_d, d in enumerate(sample["entities"]):
count_all += 1
if len(d["entity"]) == 1:
count_one += 1
lst[i_sample]["entities"].pop(i_d)
# save
save_path = data_now if isinstance(data_now, str) and data_now.endswith(".json") else "ner_delete.json"
with open(save_path, 'w') as f:
json.dump(lst, f, ensure_ascii=False, indent=4)
print("Count_one / Count_all = {} / {} \n".format(count_one, count_all))
print("Succeed to save.")
return lst
def get_tiny_data(data_now=None, size=100, save_path="ner_tiny.json"):
print("******************** Create Tiny_Data by selecting from the prettified datasets (Optional) ******************** ")
# load file
if isinstance(data_now, str) and data_now.endswith(".json"):
with open(data_now, "r") as f:
lst = json.load(f)
elif isinstance(data_now, list):
lst = data_now
else:
return False
# cut the data
lst = lst[:min(size, len(lst))]
# save cut lst
print("Save the updated data ...")
if isinstance(save_path, str) and save_path.endswith(".json"):
with open(save_path, 'w') as f:
json.dump(lst, f, ensure_ascii=False, indent=4)
print("Succeed to save.")
else:
print("Fail to save, wrong saving path.")
return True
def split_train_val_test(data_now=None, ratio=0.8, seed=42):
print("******************** Split datasets into Train/Dev/Test ******************** ")
global D_RAW
assert 0 < ratio < 1
# load file
if isinstance(data_now, str) and data_now.endswith(".json"):
with open(data_now, "r") as f:
lst = json.load(f)
elif isinstance(data_now, list):
lst = data_now
else:
return False
# shuffle the list
random.seed(seed)
random.shuffle(lst)
# split the list
idx = math.ceil(len(lst) * ratio)
train_data, rest_data = lst[:idx], lst[idx:]
dev_data = rest_data[:math.ceil(0.5*len(rest_data))]
test_data = rest_data[math.ceil(0.5 * len(rest_data)):]
print("Sample numbers: train-{}, dev-{}, test-{}".format(len(train_data), len(dev_data), len(test_data)))
# save the file
with open("ner_train.json", 'w') as f:
json.dump(train_data, f, ensure_ascii=False, indent=4)
with open("ner_dev.json", 'w') as f:
json.dump(dev_data, f, ensure_ascii=False, indent=4)
with open("ner_test.json", 'w') as f:
json.dump(test_data, f, ensure_ascii=False, indent=4)
print("Succeed to save.")
return True
if __name__ == "__main__":
# check_label()
# lst = combine_dict()
# size_sample, size_entity, d_type, avg_text_len = statistic_info(data_now="datasets/ner_all.json")
# lst, dict_entity = prettify_data(data_now="datasets/ner_all.json")
# remove_one_token(data_now="datasets/ner_all.json")
# get_tiny_data(data_now="datasets/ner_all.json")
# split_train_val_test(data_now="datasets/ner_all.json")
print("Finished.")