-
-
Notifications
You must be signed in to change notification settings - Fork 47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Smooth equivalent of ConstantInterpolation
in terms of integral
#364
Comments
Oh and of course having periods of 'negative precipitation' to compensate does not make sense. It looks like what I want is that the integral of my interpolation is a using DataInterpolations
using CairoMakie
using Random
using FindFirstFunctions: searchsortedfirst
fig = Figure()
ax_itp = Axis(fig[1,1]; title = "Interpolation")
ax_int = Axis(fig[2,1]; title = "Integral")
N = 6
Random.seed!(5)
u = rand(N)
t = cumsum(rand(N))
t_eval = range(first(t), last(t), length = 250)
A1 = ConstantInterpolation(u, t; cache_parameters = true)
lines!(ax_itp, t_eval, A1.(t_eval); label = "ConstantInterpolation")
lines!(ax_int, t_eval, DataInterpolations.integral.(Ref(A1), t_eval); label = "ConstantInterpolation")
u2 = copy(A1.I)
pushfirst!(u2, 0)
A2 = PCHIPInterpolation(u2, t)
lines!(ax_itp, t_eval, DataInterpolations.derivative.(Ref(A2), t_eval); label = "Naive smooth interpolation")
lines!(ax_int, t_eval, A2.(t_eval); label = "Naive smooth interpolation")
axislegend(ax_itp)
axislegend(ax_int)
fig |
I just realized that as posed above this problem is unsolvable. If the interpolation is nonzero at some interval and you have no precipitation in the interval afterwards, the interpolation cannot be smooth,. have an integral of |
For now I'm letting go of the condition of being able to easily add new data to the interpolation, as that poses quite some problems. My new idea is to replace each block of precipitation by a hill that has support over the neighboring intervals, using degree 2 B-spline basis functions: using DataInterpolations
using CairoMakie
using Random
using QuadGK
N = 25
Random.seed!(8)
u = rand(N)
t = collect(1:N)
t_eval = range(first(t), last(t), length = 250)
A1 = ConstantInterpolation(u, t; cache_parameters = true)
k = t[3:end]
pushfirst!(k, t[1])
pushfirst!(k, first(t))
pushfirst!(k, first(t))
push!(k, last(t))
push!(k, last(t))
sc = zeros(N)
out = zeros(length(sc), length(t_eval))
for (i, t_) in enumerate(t_eval)
sc .= 0
DataInterpolations.spline_coefficients!(sc, 2, k, t_)
out[:, i] .= sc
end
I = sum(out, dims=2) * (t_eval[2] - t_eval[1])
c = zeros(N)
c[1:(N-1)] .= diff(t) .* u[1:(N-1)] ./ I[1:(N-1)]
f = Figure()
ax_itp = Axis(f[1,1]; title = "Interpolation")
ax_int = Axis(f[2,1]; title = "Integral")
lines!(ax_itp, t_eval, A1.(t_eval); label = "ConstantInterpolation")
lines!(ax_int, t_eval, DataInterpolations.integral.(Ref(A1), t_eval); label = "ConstantInterpolation")
function A2(t_)
DataInterpolations.spline_coefficients!(sc, 2, k, t_)
return sum(sc .* c)
end
lines!(ax_itp, t_eval, A2.(t_eval); label = "QuadraticSpline")
lines!(ax_int, t_eval, [quadgk(A2, first(t), t_)[1] for t_ in t_eval]; label = "QuadraticSpline")
axislegend(ax_itp)
axislegend(ax_int)
f It must be noted that this only seems to work well with equally spaced data. |
Better fit and handling of boundaries: using DataInterpolations
using CairoMakie
using Random
using QuadGK
N = 25
Random.seed!(8)
u = rand(N)
t = collect(1:N)
function refine(u,t)
N = 2*length(t)-1
t_new = zeros(N)
u_new = zeros(N)
Δt = diff(t)
t_new[1:2:end] .= t
t_new[2:2:end] .= t[1:end-1] + Δt/2
u_new[1:2:end] .= u
u_new[2:2:end] .= u[1:end-1]
N =
u_new, t_new, N
end
u, t, N = refine(u, t)
t_eval = range(first(t), last(t), length = 500)
A1 = ConstantInterpolation(u, t; cache_parameters = true)
k = copy(t)
pushfirst!(k, first(t))
pushfirst!(k, first(t))
push!(k, last(t))
push!(k, last(t))
sc = zeros(N+1)
out = zeros(N-1, length(t_eval))
for (i, t_) in enumerate(t_eval)
sc .= 0
DataInterpolations.spline_coefficients!(sc, 2, k, t_)
out[1, i] += sc[1]
out[1, i] += sc[2]
out[2:(N-2), i] .= sc[3:(N-1)]
out[N-1, i] += sc[N]
out[N-1, i] += sc[N+1]
end
Δt = t_eval[2] - t_eval[1]
I = sum(out, dims=2) * Δt
I = I[:,1]
c = diff(t) .* u[1:(N-1)] ./ I
c_extended = copy(c)
pushfirst!(c_extended, first(c))
push!(c_extended, last(c))
f = Figure()
ax_itp = Axis(f[1,1]; title = "Interpolation")
ax_int = Axis(f[2,1]; title = "Integral")
ax_b = Axis(f[3,1]; title = "Basis functions")
scatter!(ax_b, t, zero(t))
for i in 1:(N-1)
lines!(ax_b, t_eval, out[i, :])
end
lines!(ax_itp, t_eval, A1.(t_eval); label = "ConstantInterpolation")
lines!(ax_int, t_eval, DataInterpolations.integral.(Ref(A1), t_eval); label = "ConstantInterpolation")
function A2(t_)
DataInterpolations.spline_coefficients!(sc, 2, k, t_)
return sum(sc .* c_extended)
end
lines!(ax_itp, t_eval, A2.(t_eval); label = "QuadraticSpline")
lines!(ax_int, t_eval, [quadgk(A2, first(t), t_)[1] for t_ in t_eval]; label = "QuadraticSpline")
f It actually looks like this curve has a pretty simple sigmoid unit between the middles of consecutive intervals. |
🙌 using DataInterpolations
using FindFirstFunctions: searchsortedfirstcorrelated
using CairoMakie
using Random
using QuadGK
N = 25
Random.seed!(8)
u = rand(N)
t = cumsum(rand(N))
t_eval = range(first(t), last(t), length = 500)
A1 = ConstantInterpolation(u, t; cache_parameters = true)
f = Figure()
ax_itp = Axis(f[1,1]; title = "Interpolation")
ax_int = Axis(f[2,1]; title = "Integral")
lines!(ax_itp, t_eval, A1.(t_eval); label = "ConstantInterpolation")
lines!(ax_int, t_eval, DataInterpolations.integral.(Ref(A1), t_eval); label = "ConstantInterpolation")
Δt = diff(t)
d = [min(Δt[i], Δt[i+1])/2 for i in 1:(N-2)]
Δu = diff(u)
function A2(t_)
idx = clamp(searchsortedfirstcorrelated(t, t_, 1) - 1, 1, length(t) - 1)
d_lower = (idx == 1) ? 0 : d[idx-1]
d_upper = (idx == N-1) ? 0 : d[idx]
return if (t_ - t[idx]) < d_lower
u[idx] - 0.5 * Δu[idx-1] * (((t_ - t[idx])/d_lower - 1))^2
elseif (t[idx+1] - t_) < d_upper
u[idx] + 0.5 * Δu[idx] * ((1 - (t[idx+1] - t_)/d_upper))^2
else
u[idx]
end
end
lines!(ax_itp, t_eval, A2.(t_eval))
lines!(ax_int, t_eval, [quadgk(A2, first(t), t_)[1] for t_ in t_eval])
f |
Setting a global maximum on using DataInterpolations
using FindFirstFunctions: searchsortedfirstcorrelated
using CairoMakie
using Random
using QuadGK
N = 10
Random.seed!(8)
u = rand(N)
t = cumsum(rand(N))
f = Figure()
ax_itp = Axis(f[1,1]; title = "Interpolation")
ax_int = Axis(f[2,1]; title = "Integral")
Δt = diff(t)
Δu = diff(u)
for d_max in 0.00:0.05:0.3
d = [min(Δt[i], Δt[i+1], 2d_max)/2 for i in 1:(N-2)]
function A2(t_)
idx = clamp(searchsortedfirstcorrelated(t, t_, 1) - 1, 1, length(t) - 1)
d_lower = (idx == 1) ? 0 : d[idx-1]
d_upper = (idx == N-1) ? 0 : d[idx]
return if (t_ - t[idx]) < d_lower
u[idx] - 0.5 * Δu[idx-1] * (((t_ - t[idx])/d_lower - 1))^2
elseif (t[idx+1] - t_) < d_upper
u[idx] + 0.5 * Δu[idx] * ((1 - (t[idx+1] - t_)/d_upper))^2
else
u[idx]
end
end
label = "d_max = $d_max"
lines!(ax_itp, t_eval, A2.(t_eval); label)
lines!(ax_int, t_eval, [quadgk(A2, first(t), t_)[1] for t_ in t_eval]; label)
end
axislegend(ax_itp)
axislegend(ax_int)
f |
Is your feature request related to a problem? Please describe.
A bit of context: In my ODE problem for hydrological modelling, I want to model certain forcing events like precipitation. The precipitation is given as a time series, where constant interpolation ('forward fill') is assumed so that the exact total volume is known. Constant interpolation however does not play nice with ODE solvers because of its lack of smoothness. Therefore I want to have an interpolation type which:
An additional requirement I have is that it is easy to extend this interpolation with new incoming data.
Describe the solution you’d like
The naive solution of assuming constant interpolation on the first interval and then quadratic on the others to satisfy the above conditions is not stable:
The text was updated successfully, but these errors were encountered: