-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.py
1005 lines (827 loc) · 36.9 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#from math import sqrt, cos, sin, pi
import numpy as np
ANGTORAD = np.pi / 180.0
##class Matrix:
## def canMultiply( self, object ):
## return False
FLOAT = np.float32 # np.float64
EPS = 1e-5
PRINT_RESOLUTION = 3
class Vector( object ):
'''A basic class for representing vectors of arbitrary length.'''
# DATA MANIPULATION
def __getitem__( self, index ):
'''Access an element of the vector through a zero-valued index.
The function assumes the the index is valid. If the index proves to be
invalid, an IndexError is raised.
@param: index The index of the element.
'''
return self.data[ index ]
def __setitem__( self, index, value ):
'''Set an element of the vector through a zero-valued index.
The function assumes the the index is valid. If the index proves to be
invalid, an IndexError is raised.
@param: index The index of the element.
@param: value The value to set in the vector at the index.
'''
self.data[ index ] = value
def set( self, v ):
'''Sets the values of this object with the given values in v.
@param: v An object which can be interpreted as a vector.
Either an instance of this vector, or a tuple of appropriate length.
'''
# this assumes that v's data is the same size as this.
if ( isinstance( v, self.__class__ ) ):
self.data[:] = v.data
else:
# assume it is a tuple of appropriate length
self.data[:] = v
def asTuple( self ):
'''Returns a tuple version of the vector.
@returns: A n-tuple, where the vector has n elements.
'''
return tuple( self.data.tolist() )
def getList( self ):
'''Returns a list version of the vector.
Changing the elements of the list will *not* change the elements of the vector.
@returns: A list of n floats, where the vector has n elements.
'''
return self.data.tolist()
# MATHEMATICAL OPERATIONS
def __neg__( self ):
'''Vector negation.
@returns: A new vector with all elements negated.
'''
return self.__class__( array = -self.data )
def __add__( self, v ):
'''Vector addition - element-wise addition.
@param: v The vector to add to this one.
@returns: A new vector containing the element-wise addition.
'''
assert( v.__class__ == self.__class__ )
return self.__class__( array = self.data + v.data )
def __iadd__( self, v ):
'''In-place vector addition - element-wise addition.
@param: v The vector to add to this one.
@returns: A reference to this vector.
'''
assert( v.__class__ == self.__class__ )
self.data += v.data
return self
def __sub__( self, v ):
'''Vector subtraction - element-wise subtration.
@param: v The vector to subtract from this one.
@returns: A new vector containing the element-wise subtraction.
'''
assert( v.__class__ == self.__class__ )
return self.__class__( array = self.data - v.data )
def __isub__( self, v ):
'''In-place vector subtraction - element-wise subtration.
@param: v The vector to subtract from this one.
@returns: A reference to this vector.
'''
assert( v.__class__ == self.__class__ )
self.data -= v.data
return self
def __mul__(self, m ):
'''Multiplies this vector on the right by the given multiplicand.
The multiplicand can be a scalar or a vector of the same size.
@param: m The multiplicand.
@returns: A new vector instance. If m is a scalar, then it contains the scaled values of
this vector. If m is a vector of the same size, the new vector contains they
element-wise products of the two vectors.
'''
if ( isinstance( m, float ) or isinstance( m, int ) or isinstance( m, np.floating ) or isinstance( m, np.integer ) ):
return self.__class__( array = self.data * m )
elif ( isinstance( m, self.__class__ ) ):
return self.__class__( array = self.data * m.data )
else:
raise ValueError, "Can't multiply object of type %s against a %s" % ( m.__class__.__name__, self.__class__.__name__ )
def __rmul__(self, m ):
'''Multiplies this vector on the left by a scalar multiplicand, m.
@param: m The scalar multiplicand.
@returns: A new vector instance.
@raises: ValueError if the multiplicand is not a scalar.
'''
if ( isinstance( m, float ) or isinstance( m, int ) or isinstance( m, np.floating ) or isinstance( m, np.integer ) ):
return self.__class__( array = self.data * m )
else:
raise ValueError, "Can't multiply object of type %s against a %s" % ( m.__class__.__name__, self.__class__.__name__ )
def __imul__( self, m ):
'''In-place multiplication by a scalar.
@param: m The scalar multiplicand.
@returns: A reference to this vector.
'''
assert( isinstance( m, float ) or isinstance( m, int ) or isinstance( m, np.floating ) or isinstance( m, np.integer ) )
self.data *= m
return self
def __div__( self, s ):
'''Element-wise division by a scalar.
@param: s The scalar divisor.
@returns: A new vector with each element divided by the scalar.
'''
recip = 1.0 / s
return self * recip
# VECTOR OPERATIONS
def length( self ):
'''Computes the magnitude of this vector.
@returns: A float scalar. The length of the vector.
'''
return np.sqrt( np.dot( self.data, self.data ) )
def lengthSq( self ):
'''Computes the squared magnitude of this vector.
@returns: A float scalar. The squared length of the vector.
'''
return np.dot( self.data, self.data )
def normalize( self ):
'''Returns a normalized vector in the same direction as this vector.
If the original vector has no length (i.e. the zero vector), the resultant vector will
likewise have zero length.
@returns: A new Vector3.
'''
len = self.length()
if ( len < EPS ):
return self.__class__()
else:
invLen = 1.0 / len
return self.__class__( array = self.data * invLen )
def normalize_ip( self ):
"""Normalized the vector in place so that the length equals one"""
len = self.length()
if ( len < EPS ):
self.data[:] = 0.0
else:
invLen = 1.0 / len
self.data *= invLen
return self
def dot( self, v ):
'''Performs the dot product of this vector with the given vector.
@param: v The vector to dot with this.
@returns: A scalar, the inner product of this with v.
'''
return np.dot( self.data, v.data )
def copy( self ):
'''Returns a unique copy of this vector.
@returns: A new Vector3 with the same, but independent values as this vector.
'''
return self.__class__( array = self.data )
def minAxis( self ):
"""Returns the axis with the minimum value.
If two dimensions contain an equally small value, the index will be the lower
of the two.
@returns: The index of the dimension that contains the smallest
value (includes the full range of reals, positive and negative).
"""
return self.data.argmin()
def minAbsAxis( self ):
"""Returns the axis with the minimum absolute magnitude
If two dimensions contain an equally small value, the index will be the lower
of the two.
@returns: The index of the dimension with the smallest *magnitude*.
"""
return np.abs( self.data ).argmin()
class Vector2( Vector ):
'''A two-dimensional vector'''
def __init__( self, x=0, y=0, array=None ):
'''Constructor.
The Vector can be initialized with either individual values or with the array keyword.
If no arguments are provided, the zero vector is created.
If the array argument is not None, then it is used to set the array data.
Otherwise, the x, and y values can be explicitly passed.
'''
if ( array is not None ):
assert( len( array ) == 2 )
self.data = np.array( array, FLOAT )
else:
self.data = np.array( (x, y ), FLOAT )
x = property( lambda self: self.data[0], lambda self, v: self.__setitem__( 0, v ) )
y = property( lambda self: self.data[1], lambda self, v: self.__setitem__( 1, v ) )
def __str__( self ):
'''String representation of the Vector2.
@returns: A string representing this vector.
'''
return "Vector2<{0:.{2}f}, {1:.{2}f}>".format( self.data[0], self.data[1], PRINT_RESOLUTION )
class Vector3( Vector ):
'''A three-dimensional vector.'''
def __init__(self, x = 0, y = 0, z = 0, array = None ):
'''Constructor.
The Vector can be initialized with either individual values or with the array keyword.
If no arguments are provided, the zero vector is created.
If the array argument is not None, then it is used to set the array data.
Otherwise, the x, y, and z values can be explicitly passed.
'''
if ( array is not None ):
assert( len( array ) == 3 )
self.data = np.array( array, FLOAT )
else:
self.data = np.array( (x, y, z ), FLOAT )
def __repr__( self ):
return "V3<{0:.{3}f}, {1:.{3}f}, {2:.{3}f}>".format( self.data[0], self.data[1], self.data[2], PRINT_RESOLUTION )
def __str__( self ):
return "Vector3<{0:.{3}f}, {1:.{3}f}, {2:.{3}f}>".format( self.data[0], self.data[1], self.data[2], PRINT_RESOLUTION )
x = property( lambda self: self.data[0], lambda self, v: self.__setitem__( 0, v ) )
y = property( lambda self: self.data[1], lambda self, v: self.__setitem__( 1, v ) )
z = property( lambda self: self.data[2], lambda self, v: self.__setitem__( 2, v ) )
def __mul__(self, s ):
'''Multiplies this vector on the right by the given multiplicand.
The multiplicand can be: a scalar, a vector of the same size, or a 3x3 matrix.
@param: m The multiplicand.
@returns: A new vector instance. If m is a scalar, then it contains the scaled values of
this vector. If m is a vector of the same size, the new vector contains they
element-wise products of the two vectors. If m is a matrix, it is a new Vector3.
'''
if ( isinstance( s, Matrix3x3 ) ):
return Vector3( array = np.dot( self.data, s.data ) ) #np.dot automatically transposes this array to column
elif ( isinstance( s, Matrix4x4 ) ):
v4 = np.array( ( self.data[0], self.data[1], self.data[2], 1 ), dtype=FLOAT )
return Vector3( array=np.dot( v4, s.data )[:3] )
else:
return Vector.__mul__( self, s )
def cross( self, v ):
'''Performs the cross product of this x v.
@param: v The vector to cross with this one. It must also be Vector3
@returns: A Vector3, the cross product.
'''
return self.__class__( array = np.cross( self.data[:], v.data[:] ) )
def rotateVMatrix( self, angle ):
'''Produces the matrix which will rotate around the given v the given amount.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix3x3 that when multiplied with a vector will rotate that
vector.
'''
try:
assert( self.length() >= 1.0 - EPS and self.length() <= 1.0 + EPS )
except AssertionError as e:
len = self.length()
print "Rotating around unnormalized vector: ", self, "with length %.6f" % len
raise e
c = np.cos(angle)
s = np.sin(angle)
omc = 1 - c
x = self.x
y = self.y
z = self.z
m = Matrix3x3( [[ x * x * omc + c, y * x * omc - z * s, z * x * omc + y * s ],
[ x * y * omc + z * s, y * y * omc + c, z * y * omc - x * s ],
[ x * z * omc - y * s, y * z * omc + x * s, z * z * omc + c ] ] )
return m
def rotateV( self, v, angle ):
'''Rotate this vector around another Vector3 a given angle.
@param: v The Vector3 around which this vector is to be rotated.
@param: angle The angle of rotation (in radians).
@returns: A new Vector3 instance: the rotated version of this vector.
'''
#TODO: Replace this with quaternion rotation
return self.rotateVMatrix() * self
def rotateX( self, angle ):
'''Rotates this vector around the x-axis by the given angle.
@param: angle The amount of rotation (in radians) to apply.
@returns: A new Vector3; the rotated version of this matrix.
'''
newY, newZ = self.__rotatePair( angle, self.y, self.z )
return Vector3( self.x, newY, newZ )
def rotateY( self, angle ):
'''Rotates this vector around the y-axis by the given angle.
@param: angle The amount of rotation (in radians) to apply.
@returns: A new Vector3; the rotated version of this matrix.
'''
newZ, newX = self.__rotatePair( angle, self.z, self.x )
return Vector3( newX, self.y, newZ )
def rotateZ( self, angle ):
'''Rotates this vector around the z-axis by the given angle.
@param: angle The amount of rotation (in radians) to apply.
@returns: A new Vector3; the rotated version of this matrix.
'''
newX, newY = self.__rotatePair( angle, self.x, self.y )
return Vector3( newX, newY, self.z )
def __rotatePair( self, angle, a, b ):
'''Performs a 2D rotation of the vector <a, b> around an axis orthogonal to the
plane on which <a, b> lies.
@param: angle The amount of rotation (in radians) to perform.
@param: a The first element of the R2 vector.
@param: b The second element of the R2 vector.
@returns: A 2-tuple containing the transformed a and b elements.
'''
c = np.cos( angle )
s = np.sin( angle )
newA = c * a - s * b
newB = c * b + s * a
return (newA, newB)
class Vector4( Vector ):
'''A four-dimensional vector. Interpreted as homogeneous 3D coordinates.'''
def __init__(self, x = 0, y = 0, z = 0, w = 1, array = None ):
'''Constructor.
The vector can be initialized with either individual values or with the array keyword.
If no arguments are provided, the zero vector is created.
If the array argument is not None, then it is used to set the array data.
Otherwise, the x, y, z, and w values can be explicitly passed.
'''
if ( array is not None ):
assert( len( array ) == 4 )
self.data = np.array( array, FLOAT )
else:
self.data = np.array( (x, y, z, w ), FLOAT )
def __repr__( self ):
return "V4<{0:.{4}f}, {1:.{4}f}, {2:.{4}f}, {3:.{4}f}>".format( self.data[0], self.data[1], self.data[2], self.data[3], PRINT_RESOLUTION )
def __str__( self ):
return "Vector4<{0:.{4}f}, {1:.{4}f}, {2:.{4}f}, {3:.{4}f}>".format( self.data[0], self.data[1], self.data[2], self.data[3], PRINT_RESOLUTION )
x = property( lambda self: self.data[0], lambda self, v: self.__setitem__( 0, v ) )
y = property( lambda self: self.data[1], lambda self, v: self.__setitem__( 1, v ) )
z = property( lambda self: self.data[2], lambda self, v: self.__setitem__( 2, v ) )
w = property( lambda self: self.data[3], lambda self, v: self.__setitem__( 3, v ) )
def __mul__(self, s ):
'''Multiplies this vector on the right by the given multiplicand.
The multiplicand can be: a scalar, a vector of the same size, or a 4x4 matrix.
@param: m The multiplicand.
@returns: A new vector instance. If m is a scalar, then it contains the scaled values of
this vector. If m is a vector of the same size, the new vector contains they
element-wise products of the two vectors. If m is a matrix, it is a new Vector3.
'''
if ( isinstance( s, Matrix4x4) ):
return Vector4( array = np.dot( self.data, s.data ) ) #np.dot automatically transposes this array to column
else:
return Vector.__mul__( self, s )
def getVector3( self ):
"""Returns a truncated Vector3 version of this vector.
@returns: A new Vector3 containing the x, y, and z elements of this vector.
"""
return Vector3( self.x, self.y, self.z )
def getHomoVector3( self ):
"""Returns a homogenized Vector3 version of this vector.
The homogenzied coordinates are x, y, z are divided by w.
@returns: A new Vector3 containing the homogenized x, y, and z elements of this vector.
"""
inv = 1.0 / self.w
return Vector3( self.x * inv, self.y * inv, self.z * inv )
class Matrix3x3:
'''A 3x3 matrix'''
def __init__( self, data = None ):
'''Constructor.
Either constructs the default identity matrix or initializes the matrix to the provided
data.
@param: data Optional data to initialize the matrix. If provided, it must be a
3x3 numpy array of floats.
'''
if ( data is not None ):
self.data = np.array( data )
self.rows, self.cols = self.data.shape
if ( self.rows != 3 or self.cols != 3 ):
raise ValueError, "Matrix3x3 requires a 3 X 3 array to populate"
else:
self.data = np.eye( 3 )
self.rows = 3
self.cols = 3
def __str__( self ):
s = "Matrix3x3:\n"
s += str( self.data )
return s
def __sub__( self, m ):
'''Performs element-wise subtraction between this matrix and another.
@param: m The matrix to subtract from this one.
@returns: A new Matrix3x3.
'''
if ( isinstance( m, Matrix3x3 ) ):
return Matrix3x3( self.data - m.data )
def __mul__( self, m ):
'''Multiplies this matrix by a multiplicand on its right.
The multiplicand can be a Vector3, another Matrix3x3 or a scalar.
- if Vector3, the result is the Vector3 transformed by this matrix.
- if Matrix3x3, the result is a new Matrix3x3 which is the product
of this multiplied by m.
- if scalar, the result is a new Matrix3x3 such that each element
is multiplied by the scalar.
@param: m The multiplicand.
@returns: A Vector3 if m is a Vector3, a Matrix3x3 if m is a scalar or
Matrix3x3.
'''
if ( isinstance(m, Vector3) ):
return Vector3( array = np.dot( self.data, m.data ) )
elif ( isinstance(m, Matrix3x3 ) ):
return Matrix3x3( np.dot( self.data, m.data ) )
elif( isinstance(m, int) or isinstance(m, float) or isinstance( m, np.integer ) or isinstance( m, np.floating ) ):
return Matrix3x3( np.dot( self.data, m ) )
else:
raise ValueError, "Can't multiply object of type %s against a Matrix3x3" % (s.__class__.__name__)
def __rmul__( self, m ):
'''Multiplies this matrix by a *scalar* multiplicand on its left.
This only works for scalars.
@param: m The scalar multiplicand.
@returns: A new Matrix3x3 where each element is scaled by m.
'''
if( isinstance(m, int) or isinstance(m, float) or isinstance( m, np.integer ) or isinstance( m, np.floating ) ):
return Matrix3x3( self.data * m )
else:
raise ValueError, "Can't multiply object of type %s against a Matrix3x3" % (s.__class__.__name__)
def __getitem__( self, r, ):
'''Retrieve the rth row of the matrix.
@param: r The index of the desired row.
@returns: A numpy array of floats with shape (3,). The rth row.
@raises: Index error if r is invalid.
'''
return self.data[r]
def identity():
"""Returns an identity matrix.
@returns: A new Matrix3x3: the identiy matrix.
"""
return Matrix3x3()
def transpose( self ):
'''Transposes the matrix.
@returns: A new Matrix3x3 where each elemetn (i,j) in the new matrix
comes from (j, i) in this matrix.
'''
return Matrix3x3( self.data.T )
def getFlattened( self ):
'''Returns a flattened version of the matrix.
@returns: A numpy array of floats with shape (1,9). The elements are flattened in a row-major order.
'''
return self.data.flatten().tolist()
def copy( self ):
"""Returns a copy of this matrix.
@returns: A new Matrix3x3 with the same numerical values as this matrix.
"""
return self.__class__( data = self.data )
IDENTITY3x3 = Matrix3x3()
class Matrix4x4:
'''A 3x3 matrix'''
def __init__( self, data = None ):
'''Constructor.
Either constructs the default identity matrix or initializes the matrix to the provided
data.
@param: data Optional data to initialize the matrix. If provided, it must be a
4x4 numpy array of floats.
'''
if ( data is not None ):
self.data = np.array( data )
self.rows, self.cols = self.data.shape
if ( self.rows != 4 or self.cols != 4 ):
raise ValueError, "Matrix4x4 requires a 4 X 4 array to populate"
else:
self.data = np.eye( 4 )
self.rows = 4
self.cols = 4
def __str__( self ):
s = "Matrix4x4:\n"
s += str( self.data )
return s
def __sub__( self, m ):
'''Performs element-wise subtraction between this matrix and another.
@param: m The matrix to subtract from this one.
@returns: A new Matrix4x4.
'''
if ( isinstance( m, Matrix4x4 ) ):
return Matrix4x4( self.data - m.data )
def __mul__( self, m ):
'''Multiplies this matrix by a multiplicand on its right.
The multiplicand can be a Vector4, Vector3, another Matrix4x4 or a scalar.
- if Vector4, the result is the new Vector4 transformed by this matrix.
- if Vector3, the result is a Vector3. It is the truncated, transformed Vector4
created by promoting the V3 to V4 by providing a homogeneous value of 1.
- if Matrix4x4, the result is a new Matrix4x4 which is the product
of this multiplied by m.
- if scalar, the result is a new Matrix4x4 such that each element
is multiplied by the scalar.
@param: m The multiplicand.
@returns: A Vector4 if m is a Vector4, Vector3 if m is a Vector3, a Matrix4x4 if m is a scalar or
Matrix4x4.
'''
if ( isinstance(m, Vector4 ) ):
return Vector4( array = np.dot( self.data, m.data ) )
elif ( isinstance(m, Vector3) ):
# Project V3 into V4 by setting V4[3] = 1
v = np.array( m.data.tolist() + [1] )
return Vector3( array = np.dot( self.data, v )[:3] )
elif ( isinstance(m, Matrix4x4 ) ):
return Matrix4x4( np.dot( self.data, m.data ) )
elif( isinstance(m, int) or isinstance(m, float) or isinstance( m, np.integer ) or isinstance( m, np.floating ) ):
return Matrix4x4( self.data * m )
else:
raise ValueError, "Can't multiply object of type %s against a Matrix4x4" % (m.__class__.__name__)
def __rmul__( self, m ):
'''Multiplies this matrix by a *scalar* multiplicand on its left.
This only works for scalars.
@param: m The scalar multiplicand.
@returns: A new Matrix4x4 where each element is scaled by m.
'''
if( isinstance(m, int) or isinstance(m, float) or isinstance( m, np.integer ) or isinstance( m, np.floating ) ):
return Matrix4x4( self.data * m )
else:
raise ValueError, "Can't multiply object of type %s against a Matrix4x4" % ( s.__class__.__name__ )
def __getitem__( self, r ):
'''Retrieve the rth row of the matrix.
@param: r The index of the desired row.
@returns: A numpy array of floats with shape (3,). The rth row.
@raises: Index error if r is invalid.
'''
return self.data[r]
def identity( self ):
"""Returns an identity matrix.
@returns: A new Matrix4x4: the identiy matrix.
"""
return Matrix4x4()
def setIdentity( self ):
"""Returns an identity matrix.
@returns: A new Matrix4x4: the identiy matrix.
"""
self.data[:,:] = np.eye( 4 )
def transpose( self ):
'''Transposes the matrix.
@returns: A new Matrix4x4 where each elemetn (i,j) in the new matrix
comes from (j, i) in this matrix.
'''
return Matrix4x4( self.data.T )
def getFlattened( self ):
'''Returns a flattened version of the matrix.
@returns: A numpy array of floats with shape (1,16). The elements are flattened in a row-major order.
'''
return self.data.flatten().tolist()
def setFromFlattened( self, data ):
"""Sets the matrix from a flattened array.
@param: data A numpy array of floats with shape (1,16) or (16,) interpreted as row-major
values in the matrix.
"""
data = np.array( data )
if ( data.size != 16 ):
raise ValueError, "Can't set Matrix4X4 with %d elements" % data.size
else:
self.data = data.copy()
self.data.shape = (4, 4 )
def copy( self ):
"""Returns a copy of this matrix.
@returns: A new Matrix4x4 with the same numerical values as this matrix.
"""
return self.__class__( data = self.data )
def set( self, mat ):
'''Sets this matrix from the provided matrix.
@param: mat A Matrix4x4.'''
self.data[:, :] = mat.data[:,:]
def setTranspose( self, mat ):
'''Sets this matrix as the transpose of the provided matrix.
@param: mat The matrix whose transpose will be set into this matrix.
'''
self.data[:, :] = mat.data.T[:, :]
def setRow( self, row, x0, x1, x2, x3 ):
'''Sets the row of the matrix.
@param: row The row to target.
@param: x0 The value for the 0th element on the row.
@param: x1 The value for the 1st element on the row.
@param: x2 The value for the 2nd element on the row.
@param: x3 The value for the 3rd element on the row.
'''
self.data[ row, 0 ] = x0
self.data[ row, 1 ] = x1
self.data[ row, 2 ] = x2
self.data[ row, 3 ] = x3
def setDiagonal( self, x0, x1, x2, x3 ):
'''Sets the digonal values (top-left to bottom-right).
@param: x0 The value for the (0,0) element.
@param: x1 The value for the (1,1) element.
@param: x2 The value for the (2,2) element.
@param: x3 The value for the (3,3) element.
'''
self.data[0, 0] = x0
self.data[1, 1] = x1
self.data[2, 2] = x2
self.data[3, 3] = x3
def homogenize3x3( m ):
"""Converts a 3x3 matrix to 4x4 by adding 0's and a single 1.
param: m A Matrix3x3 to use as the basis for this matrix.
"""
return Matrix4x4( [ m.data[0].tolist() + [0],
m.data[1].tolist() + [0],
m.data[2].tolist() + [0],
[ 0, 0, 0, 1] ] )
IDENTITY4x4 = Matrix4x4()
def createXRotateMatrix4( angle ):
'''Creates a matrix to rotate around the x-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix4x4.
'''
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix4x4( [[1, 0, 0, 0],
[0, cx, -sx, 0],
[0, sx, cx, 0],
[0, 0, 0, 1] ] )
def createYRotateMatrix4( angle ):
'''Creates a matrix to rotate around the y-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix4x4.
'''
# see createYRotateMatrix3 for the explanation of why the sine terms are transposed
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix4x4( [[cx, 0, sx, 0],
[0, 1, 0, 0],
[-sx, 0, cx, 0],
[0, 0, 0, 1] ] )
def createZRotateMatrix4( angle ):
'''Creates a matrix to rotate around the z-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix4x4.
'''
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix4x4( [[cx, -sx, 0, 0],
[sx, cx, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1] ] )
def createXRotateMatrix3( angle ):
'''Creates a matrix to rotate around the x-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix3x3.
'''
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix3x3( [[1, 0, 0],
[0, cx, -sx],
[0, sx, cx] ] )
def createYRotateMatrix3( angle ):
'''Creates a matrix to rotate around the y-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix3x3.
'''
# NOTE - note that the position of sx and -sx are transposed from the other matrices
# This is because looking down the Z.cross( X ) = Y
# That implies that the 90-degree range between Z and X STARTS at Z and sweeps
# counter-clockwise to X. In other words, Z is the horizontal and X is the vertical axis.
# So, transposing this matrix will implicitly perform this switch.
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix3x3( [[cx, 0, sx],
[0, 1, 0],
[-sx, 0, cx] ] )
def createZRotateMatrix3( angle ):
'''Creates a matrix to rotate around the z-axis.
@param: angle The angle of rotation (in radians).
@returns: A new Matrix3x3.
'''
cx = np.cos( angle )
sx = np.sin( angle )
return Matrix3x3( [[cx, -sx, 0],
[sx, cx, 0],
[0, 0, 1] ] )
if __name__ == "__main__":
def testR3V():
testVec( Vector3, "Testing R3 Vector" )
def testR4V():
testVec( Vector4, "Testing R4 Vector" )
def testVec( V, msg ):
ANGLE = 30
print msg
v1 = V(1, 2, 3)
print "\tAccess"
print "\tv1:", v1
print "\tv1.x =", v1.x
print "\tv1.y =", v1.y
print "\tv1.z =", v1.z
print "\tv1.[0] =", v1[0]
print "\tv1.[1] =", v1[1]
print "\tv1.[2] =", v1[2]
print "\tv1.getTuple() =", v1.getTuple()
print "\tv1.getList() =", v1.getList()
v1.x = 10
print "\tv1.x = 10", v1
v1.y = 20
print "\tv1.y = 20", v1
v1.z = 30
print "\tv1.z = 30", v1
print "\n\tMath"
print "\tscalar"
try:
res = v1 + 3
print "ERROR! Allowed vector plus scalar"
except AttributeError:
print "\t\tv1 + scalar is not allowed!"
try:
v1 += 3
print "ERROR! Allowed vector in-place plus scalar"
except AttributeError:
print "\t\tv1 += scalar is not allowed!"
print "\t\tv1 * 3 =", ( v1 * 3 )
print "\t\t3 * v1 =", ( 3 * v1 )
print "\tvector"
v2 = V(4, 5, 6 )
print "\t\tv2 =", v2
print "\t\tv1 + v2 =", (v1 + v2 )
print "\t\tv2 + v1 =", (v2 + v1 )
print "\t\tv1 - v2 =", (v1 - v2 )
print "\t\tv2 - v1 =", (v2 - v1 )
v1 += v2
print "\t\tv1 += v2 -->", v1
print "\t\tv1 =", v1, ", ||v1|| =", v1.length()
print "\t\tv2 =", v2, ", ||v2|| =", v2.length()
print "\t\tv1/||v1|| =", v1.normalize()
print "\t\tv2/||v2|| =", v2.normalize()
print "\t\tv1 . v2 =", v1.dot( v2 )
try:
x = v1.cross( v2 )
print "\t\tv1 x v2 =", x
print "\t\tv2 x v1 =", v2.cross( v1 )
except AttributeError:
print '\t\t%s has no cross function' % V.__name__
v1.normalize_ip()
v2.normalize_ip()
print "\t\tv1/||v1|| =", v1.normalize()
print "\t\tv2/||v2|| =", v2.normalize()
print "\t\tv1 . v2 =", v1.dot( v2 )
try:
x = v1.cross( v2 )
print "\t\tv1 x v2 =", x
print "\t\tv2 x v1 =", v2.cross( v1 )
v1.x = v1.z = 0
v1.y = 1
print "\t\tv1:", v1
v = v1.rotateV( V( 1, 1, 1), ANGLE * ANGTORAD )
print "\t\tRotated %d degrees around (1, 1, 1)" % (ANGLE), v
v = v1.rotateV( V( 1, 0, ), ANGLE * ANGTORAD )
print "\t\tRotated %d degrees around (1, 0, 0)" % (ANGLE), v
v = v1.rotateX( ANGLE * ANGTORAD )
print "\t\tRotate %d degrees around x " % (ANGLE), v
v1.x = 1
v1.y = 0
print "\t\tv1:", v1
v = v1.rotateV( V( 0, 1, 0), ANGLE * ANGTORAD )
print "\t\tRotated %d degrees around (0, 1, 0)" % (ANGLE), v
v = v1.rotateY( ANGLE * ANGTORAD )
print "\t\tRotate %d degrees around y " % (ANGLE), v
v = v1.rotateV( V( 0, 0, 1), ANGLE * ANGTORAD )
print "\t\tRotated %d degrees around (0, 0, 1)" % (ANGLE), v
v = v1.rotateZ( ANGLE * ANGTORAD )
print "\t\tRotate %d degrees around z " % (ANGLE), v
except:
pass
v1 = V( 2, 3, 4 )
v = v1 * v1
print "\t\tv1 .* v1", v
v2 = v1.copy()
v2.y = 32
print "\t\t%s != %s" % ( v1, v2 )
def testR3M():
testMatrix( Matrix3x3, Vector3, "Testing R3 Matrix" )
def testR4M():
testMatrix( Matrix4x4, Vector4, "Testing R4 Matrix" )
def testMatrix( M, V, msg ):
print msg
m = M()
print "\tm\n", m
ANGLE = 30
xRot = createXRotateMatrix3( ANGLE * ANGTORAD )
print "\t%d-degree x-rotation\n" % ( ANGLE ), xRot
yRot = createYRotateMatrix3( ANGLE * ANGTORAD )
print "\t%d-degree y-rotation\n" % (ANGLE), yRot
zRot = createZRotateMatrix3( ANGLE * ANGTORAD )
print "\t%d-degree z-rotation\n" % (ANGLE), zRot
v = V( 0, 1, 0 )
print "\tv", v
print "\tX * v", xRot * v
v = V( 1, 0, 0 )
print "\tv", v
print "\tY * v", yRot * v
print "\tZ * v", zRot * v
m[0][0] = 0
m[0][1] = 1
m[1][0] = 1
m[1][1] = 0
v = V( 1, 2, 3 )
print "\tv", v
print "\tm\n", m
print "\tM * v", m * v
print "\tM - I\n", m - M()
print "\tM * 2\n", m * 2
print "\tM * X\n", m * xRot
print "\tX.transpose()\n", xRot.transpose()
print "\tX.flat", xRot.getFlattened()
def glTest():
M = Matrix4x4
m = M()
print "\nIdentity\n", m
ANGLE = 30
xRot = createXRotateMatrix4( ANGLE * ANGTORAD )
print "\nRotate X - %d degrees\n" % ( ANGLE ), xRot
yRot = createYRotateMatrix4( ANGLE * ANGTORAD )
print "\nRotate Y - %d degrees\n" % ( ANGLE ), yRot
zRot = createZRotateMatrix4( ANGLE * ANGTORAD )
print "\nRotate Z - %d degrees\n" % ( ANGLE ), zRot
rot = yRot * xRot
print "\nRotate X(%d), then Y(%d)\n" % ( ANGLE, ANGLE), rot
## glTest()
testR3V()
## testR4V()
## testR3M()
##
## v1 = Vector3(0, 1, 0)
## print "2 * v1", (2 * v1)
## print "v1 * 3", (v1 * 3)
## try:
## print "v1 * v1", (v1 * v1)
## except ValueError, inst:
## print inst.__class__.__name__, inst.args
##
## m1 = Matrix3x3([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
## m2 = Matrix3x3([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
## print "m1 * m2", (m1 * m2)
## print "m1 * v1", (m1 * v1)