forked from elemental/Elemental
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREFERENCES.bib
678 lines (606 loc) · 20.1 KB
/
REFERENCES.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
NOTE: This list is still missing a large number of important papers
// TODO: Add the (large) list of convex optimization references recently
// referenced, e.g.,
//
// [1] Scott S. Chen, David L. Donoho, and Michael A. Saunders,
// "Atomic Decomposition by Basis Pursuit",
// SIAM Review, Vol. 43, No. 1, pp. 129--159, 2001
//
Pseudospectra
=============
Two-norm Pseudospectra
----------------------
Single-input single-pass algorithm for shifted Hessenberg system solves.
Cited as the impetus for BischofDattaPurkayastha-1994
@article{Datta-1989,
author={Biswa N. Datta},
title={Parallel and large-scale matrix computations in control: some ideas},
journal={Linear Algebra and its Applications},
volume=121,
pages={243--264},
year=1989
}
Introduced single-pass shifted Hessenberg solves for A X - X H = C and a
blocked extension. This computational kernel is the basis for Elemental's
proposed interleaved Lancozs pseudospectra algorithm.
@article{BischofDattaPurkayastha-1994,
author={Christian H. Bischof and Biswa N. Datta and Avijit Purkayastha},
title={A parallel algorithm for the Sylvester-Observer Equation},
journal={SIAM Journal on Scientific Computing},
volume=17,
number=3,
pages={686--698},
year=1994
}
Numerically-robust extensions of BischofDattaPurkayastha-1994's
multiplication-based shifted Hessenberg solver (discussed in the
upper-Hessenberg setting)
@techreport{Henry-1994,
author={Greg Henry},
title={The shifted Hessenberg system solve computation},
type={{T}echnical {R}eport},
institution={Cornell University},
year=1994
}
Introduced the triangularization + inverse iteration approach
@article{Lui-1997,
author={Shiu-Hong Lui},
title={Computation of pseudospectra by continuation},
journal={SIAM Journal on Scientific Computing},
volume=18,
number=2,
pages={567--573},
year=1997
}
A comprehensive review paper on computing pseudospectra.
@article{Trefethen-1999,
author={Lloyd N. Trefethen},
title={Computation of pseudospectra},
journal={Acta Numerica},
volume=8,
pages={247--295},
year=1999
}
By far the most comprehensive overview of pseudospectra and their applications
@book{TrefethenEmbree-2005,
author={Lloyd N. Trefethen and Mark Embree},
title={Spectra and {P}seudospectra: {T}he {B}ehavior of {N}onnormal
{M}atrices and {O}perators},
publisher={Princeton University Press},
year=2005
}
One-norm Pseudospectra
----------------------
A simple variant of the power method for computing 1-norm estimates
@article{Hager-1984,
author={W. W. Hager},
title={Condition estimates},
journal={SIAM Journal on Scientific and Statistical Computing},
volume=5,
number=2,
pages={311--316},
year=1984
}
A practical version of the 1-norm estimation routine from Hager-1984
@article{Higham-1988,
author={Nicholas J. Higham},
title={{FORTRAN} codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation},
journal={{ACM} Transactions on Mathematical Software},
volume=14,
number=4,
pages={381--396},
year=1988
}
An efficient (and typically more accurate) blocked variant of the algorithm
from Higham-1988
@article{HighamTisseur-2000,
author={Nicholas J. Higham and Francoise Tisseur},
title={A block algorithm for matrix 1-norm estimation, with an application
to 1-norm pseudospectra},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=21,
number=4,
pages={1185--1201},
year=2000
}
Multiple examples of the application of one-norm pseudospectra
@book{TrefethenEmbree-2005,
author={Lloyd N. Trefethen and Mark Embree},
title={Spectra and {P}seudospectra: {T}he {B}ehavior of {N}onnormal
{M}atrices and {O}perators},
publisher={Princeton University Press},
year=2005
}
Schur decomposition
===================
Spectral Divide and Conquer
---------------------------
Elemental contains preliminary implementations of spectral divide and conquer
algorithms derived from the following paper:
@article{BaiEtAl-1997,
author={Zhaojun Bai and James Demmel and Jack Dongarra and Antoine Petitet
and Howard Robinson and Ken Stanley},
title={The spectral decomposition of nonsymmetric matrices on distributed
memory parallel computers},
journal={SIAM Journal on Scientific Computing},
volume=18,
number=5,
pages={1446--1461},
year=1997
}
The randomized approach from the following paper is used in order to avoid a
pivoted QR decomposition:
@article{DemmelDumitriuHoltz-2007,
author={James Demmel and Ioana Dumitriu and Olga Holtz},
title={Fast linear algebra is stable},
journal={Numerische Mathematik},
volume=108,
number=1,
pages={59--91},
year=2007
}
Subsequent developments and refinement of the randomized approach from
"Fast linear algebra is stable"
@techreport{BallardDemmelDumitiu-2011,
author={Grey Ballard and James Demmel and Ioana Dumitiu},
title={Minimizing communication for eigenproblems and the {S}ingular {V}alue
{D}ecomposition},
type={{T}echnical {R}eport},
institution={University of California at Berkeley},
number={UCB/EECS-2011-14},
year=2011
}
SDC algorithms based upon QWDH
@article{NakatsukasaHigham-2013,
author={Yuji Nakatsukasa and Nicholas J. Higham},
title={Stable and efficient {S}pectral {D}ivide and {C}onquer algorithms for
the symmetric eigenvalue decomposition and the {SVD}},
journal={SIAM Journal on Scientific Computing},
volume=35,
number=3,
pages={A1325--A1349},
year=2013
}
Hessenberg QR algorithm
-----------------------
Cited by HenryWatkinsDongarra-2002 as the inspiration for Watkins-1994
@techreport{Dubrulle-1992,
author={A. Dubrulle},
title={The multishift QR algorithm -- Is it worth the trouble?},
type={{T}echnical {R}eport},
institution={IBM Scientific Center, Palo Alto, CA},
year=1992
}
@article{Watkins-1994,
author={David S. Watkins},
title={Shifting strategies for the parallel QR algorithm},
journal={SIAM Journal on Scientific Computing},
volume=15,
pages={953--958},
year=1994
}
@article{HenryVanDeGeijn-1997,
author={Greg Henry and Robert van de Geijn},
title={Parallelizing the QR algorithm for the unsymmetric algebraic
eigenvalue problem: Myths and reality},
journal={SIAM Journal on Scientific Computing},
volume=17,
pages={870--883},
year=1997
}
@article{HenryWatkinsDongarra-2002,
author={Greg Henry and David S. Watkins and Jack J. Dongarra},
title={A parallel implementation of the nonsymmetric QR algorithm for
distributed memory architectures},
journal={SIAM Journal on Scientific Computing},
volume=24,
number=1,
pages={284--311},
year=2002
}
@article{BramanByersMathias-2002-I,
author={Karen Braman and Ralph Byers and Roy Mathias},
title={The multishift {QR} algorithm. {P}art {I}: {M}aintaining well-focused
shifts and level 3 performance},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=23,
number=4,
pages={929--947},
year=2002
}
@article{BramanByersMathias-2002-II,
author={Karen Braman and Ralph Byers and Roy Mathias},
title={The multishift {QR} algorithm. {P}art {II}: {A}ggressive {E}arly
{D}eflation},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=23,
number=4,
pages={948--973},
year=2002
}
The resulting TOMS publication from LAWN 153 on extending ScaLAPACK's
pdlahqr to complex arithmetic (pzlahqr)
@article{Fahey-2003,
author={Mark R. Fahey},
title={A parallel eigenvalue routine for complex Hessenberg matrices},
journal={{ACM} Transactions on Mathematical Software},
volume=29,
number=3,
pages={326--336},
year=2003
}
Introduced a parallel and high-performance "computational window" scheme for
reordering eigenvalues in Schur form
@article{GranatKagstromKressner-2009,
author={Robert Granat and Bo Kagstrom and Daniel Kressner},
title={Parallel eigenvalue reordering in real Schur forms},
journal={Concurrency and Computation: Practice and Experience},
volume=21,
number=9,
pages={1225--1250},
year=2009
}
The first major publication for the parallel QR algorithm with
Aggressive Early Deflation and computational windows
@article{GranatKagstromKressner-2010,
author={Robert Granat and Bo Kagstrom and Daniel Kressner},
title={A novel parallel QR algorithm for hybrid distributed memory HPC
systems},
journal={SIAM Journal on Scientific Computing},
volume=32,
number=4,
pages={2345--2378},
year=2010
}
Pivoted QR
==========
Introduced the Businger-Golub algorithm for column-pivoted QR decompositions.
@article{BusingerGolub-1965,
author={Peter A. Businger and Gene H. Golub},
title={Linear least squares solutions by {H}ouseholder transformations},
journal={Numerische Mathematik},
volume=7,
number=3,
pages={269--276},
year=1965
}
Introduced GKS matrix, which the greedy RRQR fails on.
@techreport{GolubKlemaStewart-1976,
author={Gene H. Golub and Virginia Klema and G.W. Stewart},
title={Rank degeneracy and least squares problems},
institution={Stanford University},
number={STAN-CS-76-559},
year=1976
}
Standard reference for (strong) RRQR factorizations, which will hopefully be
added to Elemental in the near future.
@article{GuEisenstat-1996,
author={Ming Gu and Stanley Eisenstat},
title={Efficient algorithms for computing a strong rank-revealing {QR}
factorization},
journal={SIAM Journal on Scientific Computing},
volume=17,
number=4,
pages={848--869},
year=1996
}
Elemental uses the same norm updating strategy as this paper and the
corresponding LAPACK implementation of dgeqpf.f
@article{DrmacBujanovic-2008,
author={Zlatko Drmac and Zvonimir Bujanovic},
title={On the failure of {R}ank-{R}evealing {QR} factorization software --
a case study},
journal={{ACM} Transactions on Mathematical Software},
volume=35,
number=2,
pages={12:1--12:28},
year=2008
}
Up-/downdating LU factorizations
================================
Elemental's LUMod closely follows the discussion of Algorithm I from the
following paper, which is attributed to the textbook
"Numerische lineare Algebra" by A. Kielbasinski and H. Schwetlick.
@article{StangeGriewankBollhofer-2007,
author={Peter Stange and Andreas Griewank and Matthias Bollhofer},
title={On the efficient update of rectangular {LU}-factorizations subject
to low rank modifications},
journal={Electronic Transactions on Numerical Analysis},
volume=26,
pages={161--177},
year=2007
}
Up-/downdating Cholesky factorizations
======================================
It is demonstrated that downdated Cholesky factorizations can be an
ill-conditioned function of the original Cholesky factor and the update vector.
@article{Stewart-1979,
author={G.W. Stewart},
title={The effects of rounding error on an algorithm for downdating a
Cholesky factorization},
journal={IMA Journal of Applied Mathematics},
volume=23,
number=2,
pages={203--213},
year=1979
}
A general analysis of the stability of triangularizing matrices via
hyperbolic Householder transformations.
@article{StewartStewart-1998,
author={Michael Stewart and G.W. Stewart},
title={On hyperbolic triangularization: stability and pivoting},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=19,
number=4,
pages={847--860},
year=1998
}
A review of generalized/hyperbolic Householder transforms which also introduces
blocked algorithms for up-/downdating via accumulated generalized Householder
transforms.
@article{VanDeGeijnVanZee-2011,
author={Robert A. van de Geijn and Field G. van Zee},
title={High-performance up-and-downdating via Householder-like
transformations},
journal={{ACM} Transactions on Mathematical Software},
volume=38,
number=1,
pages={4:1--4:17},
year=2011
}
Singular Value Decomposition
============================
This paper introduced the standard algorithm for computing the SVD.
@article{GolubReinsch-1970,
author={Gene H. Golub and Christian Reinsch},
title={Singular value decomposition and least squares solutions},
journal={Numerische Mathematik},
volume=14,
number=5,
pages={403--420},
year=1970
}
This paper introduced the idea of using a QR decomposition as a first
step in the SVD of a non-square matrix in order to accelerate the
computation (well, an earlier Golub paper mentioned it as well).
@article{Chan-1982,
author={Tony F. Chan},
title={An improved algorithm for computing the {S}ingular {V}alue
{D}ecomposition},
journal={{ACM} Transactions on Mathematical Software},
volume=8,
number=1,
pages={72--83},
year=1982
}
This could serve as a foundation for achieving high absolute accuracy
in a cross-product based algorithm for computing the SVD. Such an
approach should be more scalable than the current
bidiagonalization-based approach.
@article{Jia-2006,
author={Zhongxiao Jia},
title={Using cross-product matrices to compute the {SVD}},
journal={Numerical Algorithms},
volume=42,
number=1,
pages={31--61},
year=2006
}
Symmetric positive-definite inversion
=====================================
The variant 2 single-sweep algorithm from Fig. 9 was parallelized for
Elemental's HPD inversion.
@article{BientinesiGunterVanDeGeijn-2008,
author={Paolo Bientinesi and Brian Gunter and Robert A. van de Geijn},
title={Families of algorithms related to the inversion of a {S}ymmetric
{P}ositive {D}efinite matrix},
journal={{ACM} Transactions on Mathematical Software},
volume=35,
number=1,
pages={3:1--3:22},
year=2008
}
Interpolative and skeleton decompositions
=========================================
Standard reference for (pseudo-)skeleton approximations, which are also referred
to as CUR decompositions, especially when the center matrix is non-square.
@article{GoreinovTyrtyshnikovZamarashkin-1997,
author={S.A. Goreinov and E.E. Tyrtyshnikov and N.L. Zamarashkin},
title={A theory of pseudoskeleton approximations},
journal={Linear Algebra and Appl},
volume=261,
number=1--3,
pages={1--21},
year=1997
}
Introduced effective randomized approximations of interpolative decompositions
@article{LibertyEtAl-2007,
author={Edo Liberty and Franco Woolfe and Per-Gunnar Martinsson and
Vladimir Rokhlin and Mark Tygert},
title={Randomized algorithms for the low-rank approximation of matrices},
journal={Proceedings of the National Academy of Sciences, USA},
volume=104,
pages={20167--20172},
year=2007
}
Contains a thorough analysis of many randomized algorithms for (pseudoskeleton)
decompositions using RRQR factorizations.
@article{ChiuDemanet-2013,
author={Jiawei Chiu and Laurent Demanet},
title={Sublinear randomized algorithms for skeleton decompositions},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=34,
number=3,
pages={1361--1383},
year=2013
}
Householder tridiagonalization
==============================
Contains the algorithm used for Elemental's square-grid tridiagonalization.
@techreport{Stanley-1997,
author={Ken Stanley},
title={Execution time of symmetric eigensolvers},
type={{Ph.D.} {D}issertation},
institution={University of California at Berkeley},
number={CSD-99-1039},
pages=183,
year=1997
}
One of the origins for the square-grid tridiagonalization algorithm used in
Elemental (which was later refined by Stanley et al.).
@article{HendricksonJessupSmith-1999,
author={Bruce Hendrickson and Elizabeth Jessup and Christopher Smith},
title={Towards an efficient parallel eigensolver for dense symmetric
matrices},
journal={SIAM Journal on Scientific Computing},
volume=20,
number=3,
pages={1132--1154},
year=1999
}
Two-sided triangular transformations
====================================
Contains the main algorithm used for Elemental's two-sided triangular solves.
@inproceedings{SearsStanleyHenry-1998,
author={Mark P. Sears and Ken Stanley and Greg Henry},
title={Application of a high performance parallel eigensolver to electronic
structure calculation},
booktitle={Proceedings of the ACM/IEEE Conference on Supercomputing},
publisher={IEEE Computer Society},
year=1998
}
Matrix functions
================
Heavily used for Elemental's Sign implementation
TODO: Cite paper(s) instead
@book{Higham-2008,
author={Nicholas J. Higham},
title={Functions of {M}atrices: {T}heory and {C}omputation},
publisher={SIAM},
year=2008
}
Algorithm for the polar decomposition which typically converges in less than
seven iterations
@article{NakatsukasaBaiGygi-2010,
author={Yuji Nakatsukasa and Zhaojun Bai and Francois Gygi},
title={Optimizing {H}alley's iteration for computing the matrix polar
decomposition},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=31,
number=5,
pages={2700--2720},
year=2010
}
Fast Haar generation
====================
Useful for randomized rank-revealing factorizations of rank-deficient matrices
@article{Stewart-1980,
author={G.W. Stewart},
title={The efficient generation of random orthogonal matrices with an
application to condition estimators},
journal={SIAM Journal on Numerical Analysis},
volume=17,
number=3,
pages={403--409},
year=1980
}
Convex optimization
===================
The line search reference for the L-BFGS algorithm of ByrdEtAl-1995
@article{MoreThuente-1994,
author={Jorge J. Mor\'e and David J. Thuente},
title={Line search algorithms with guaranteed sufficient decrease},
journal={{ACM} Transactions on Mathematical Software},
volume=20,
number=3,
pages={286--307},
year=1994
}
Introduced the lasso
@article{Tibshirani-1995,
author={Robert Tibshirani},
title={Regression shrinkage and selection via the lasso},
journal={Journal of the Royal Statistical Society, Series B (Methodological)},
volume=58,
number=1,
pages={267--288},
year=1996
}
The basis for Elemental's (upcoming) L-BFGS implementation
@article{ByrdEtAl-1995,
author={Richard H. Byrd and Peihuang Lu and Jorge Nocedal and Ciyou Zhu},
title={A limited memory algorithm for bound constrained optimization},
journal={SIAM Journal on Scientific Computing},
volume=16,
number=5,
pages={1190--1208},
year=1995
}
Section 4 contains the sparse covariance selection experiment used in
examples/convex/SparseInvCov.cpp
@article{dAspremontBanerjeeElGhaoui-2008,
author={Alexandre d'Aspremont and Onureena Banerjee and Laurent El Ghaoui},
title={First-order methods for sparse covariance selection},
journal={SIAM Journal on Matrix Analysis and Applications},
volume=30,
number=1,
pages={56--66},
year=2008
}
Introduces techniques for L+S decompositions and proves that exact recovery
is often possible
@article{CandesEtAl-2011,
author={Emmanuel J. Cand\`es and Xiaodong Li and Yi Ma and John Wright},
title={Robust principal component analysis?},
journal={Journal of the {ACM}},
volume=58,
number=3,
pages={11:1--11:37},
year=2011
}
Contains a wide variety of ADMM solvers which can be mapped to parallel
architectures via parallel factorizations/SVD/etc.
@article{BoydEtAl-2011,
author={Stephen Boyd and Neal Parikh and Eric Chu and Borja Peleato and
Jonathan Eckstein},
title={Distributed optimization and statistical learning via the
Alternating Direction Method of Multipliers},
journal={Foundations and Trends in Machine Learning},
volume=3,
number=1,
pages={1--122},
year=2011
}
Basic Linear Algebra Subprograms
================================
@article{LawsonEtAl-1979,
author={C. L. Lawson and R. J. Hanson and D. R. Kincaid and F. T. Krogh},
title={{B}asic linear algebra subprograms for {F}ortran usage},
journal={{ACM} Transactions on Mathematical Software},
volume=5,
number=3,
pages={308--323},
year=1979
}
@article{DongarraEtAl-1990,
author={Jack J. Dongarra and Jeremy Du Croz and Sven Hammarling and
Iain S. Duff},
title={A set of level 3 basic linear algebra subprograms},
journal={{ACM} Transactions on Mathematical Software},
volume=16,
number=1,
pages={1--17},
year=1990
}
Miscellaneous
=============
Added for definition of Kahan matrix (pg. 260)
@book{GolubVanLoan-1996,
author={Gene H. Golub and Charles F. van Loan},
title={Matrix {C}omputations},
edition={3rd},
publisher={Johns Hopkins University Press},
address={Baltimore},
year=1996
}