-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathguidance_flu.py
104 lines (77 loc) · 3.5 KB
/
guidance_flu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import sys
from utils.model_dict import *
import pandas as pd
import json
from tqdm import tqdm
import numpy as np
from vllm import LLM, SamplingParams
from tqdm import tqdm
from collections import defaultdict
from utils.prompt import *
from eval4nlp.sangmin.score_func import *
import argparse
import pandas as pd
import csv
import guidance
import pandas as pd
import torch
import torch.nn.functional as F
def weighted_sum(scores):
# Convert scores to tensor
scores_tensor = torch.tensor(list(scores.values()), dtype=torch.float32)
# Compute softmax probabilities
probabilities_tensor = F.softmax(scores_tensor, dim=0)
# Compute weighted sum
keys_tensor = torch.tensor([float(key) for key in scores.keys()], dtype=torch.float32)
result = torch.dot(keys_tensor, probabilities_tensor)
return result.item()
def parse_output(output):
try:
matched = re.search("^ ?([\d\.]+)", output)
if (matched):
try:
score = float(matched.group(1))
except:
score = 0
else:
score = 0
except:
score = 0
return score
def main(args):
data_path = 'data_path'
data = pd.read_csv(data_path)
model_name = 'Platypus2-70B-Instruct-GPTQ' # orca_mini_v3_7b Platypus2-70B-Instruct-GPTQ
model_path = f'/path/{model_name}'
model, tokenizer, u_prompt, a_prompt = load_from_catalogue(model_name, model_path, 'cuda:0')
g_model = guidance.llms.Transformers(
model, tokenizer=tokenizer, trust_remote_code=True)
guidance.llms.Transformers.cache.clear()
guidance.llm = g_model
if args.aspect_category == 'multi':
flu = "Fluency:\nThis rating measures the quality of individual sentences, are they well-written and grammatically correct.\nConsider the quality of individual sentences."
if args.score_func == 'sampling_sum':
input_prompt = "{{u_prompt}}\nIn this task you will evaluate the quality of a summary written for a news article.\nTo correctly solve this task, follow these steps:\n\n1. Carefully read the news article, be aware of the information it contains.\n2. Read the proposed summary.\n3. Rate each summary on a scale from 1 (worst) to 5 (best) by its {{aspect}}.\n\n# Definition:\n{{definition}}\n----\nSource text: {{source}}\nSummary: {{summary}}\n\n{{a_prompt}}\n\nScore: {{gen 'score' n=20 temperature=1 max_tokens=5}}"
structure_program = guidance(input_prompt, llm=g_model, caching=False)
con_score = []
for i in tqdm(range(len(data))):
zero_shot = structure_program(
u_prompt=u_prompt,
aspect="fluency",
definition=flu,
source=data['SRC'][i],
summary=data['HYP'][i],
a_prompt=a_prompt,
silent=True
)
sampling_parse_list = [parse_output(x) for x in zero_shot['score']]
con_score.append(np.mean(np.array(sampling_parse_list)))
df = pd.DataFrame({"flu":con_score})
df.to_csv(f"/path/70b_{args.aspect_category}_{args.score_func}1_dev_flu.csv", index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--score_func', type=str, default='direct_generation')
parser.add_argument('--aspect_category', type=str, default='multi')
args = parser.parse_args()
main(args)