forked from AngeLouCN/CFPNet-Medicine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
252 lines (188 loc) · 8.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 17 22:05:16 2021
@author: angelou
"""
import os
import cv2
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from keras import initializers
from keras.layers import SpatialDropout2D,Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate,AveragePooling2D, UpSampling2D, BatchNormalization, Activation, add,Dropout,Permute,ZeroPadding2D,Add, Reshape
from keras.models import Model, model_from_json
from keras.optimizers import Adam
from keras.layers.advanced_activations import ELU, LeakyReLU, ReLU, PReLU
from keras.utils.vis_utils import plot_model
from keras import backend as K
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras import applications, optimizers, callbacks
import matplotlib
import keras
import tensorflow as tf
from keras.layers import *
from model.model import DCUNet,CFPNet, unet, ICNet, ENet, espnet,MultiResUnet
from keras.preprocessing.image import ImageDataGenerator
import time
from loss import dice_coef, jacard, dice_coef_loss, iou_loss, tversky, tversky_loss, focal_tversky, generalized_dice_coeff, generalized_dice_loss
from network.DCUNet import DCUNet
from network.CFPNetM import CFPNetM
from network.ICNet import ICNet
from network.ENet import ENet
from network.ESPNet import ESPNet
from network.MultiResUNet import MultiResUnet
from network.UNet import UNet
from keras.models import load_model
import segmentation_models as sm
# prepare training and testing set
X = []
Y = []
for i in range(612):
path = 'D:\\CVC-ClinicDB\\Original\\'+ str(i+1)+'.tif'
img = cv2.imread(path,1)
resized_img = cv2.resize(img,(256, 192), interpolation = cv2.INTER_CUBIC)
X.append(resized_img)
for i in range(612):
path2 = 'D:\\CVC-ClinicDB\\Ground Truth\\' + str(i+1)+'.tif'
msk = cv2.imread(path2,0)
resized_msk = cv2.resize(msk,(256, 192), interpolation = cv2.INTER_CUBIC)
Y.append(resized_msk)
# # ######################################################################
X = np.array(X)
Y = np.array(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=4)
Y_train = Y_train.reshape((Y_train.shape[0],Y_train.shape[1],Y_train.shape[2],1))
Y_test = Y_test.reshape((Y_test.shape[0],Y_test.shape[1],Y_test.shape[2],1))
##### If gray-level image, use this code
# X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
# Y_train = Y_train.reshape((Y_train.shape[0],Y_train.shape[1],Y_train.shape[2],1))
# Y_test = Y_test.reshape((Y_test.shape[0],Y_test.shape[1],Y_test.shape[2],1))
# X_train = X_train.reshape((X_train.shape[0],X_train.shape[1],X_train.shape[2],1))
# X_test = X_test.reshape((X_test.shape[0],X_test.shape[1],X_test.shape[2],1))
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
Y_train = Y_train.astype('float32') / 255
Y_test = Y_test.astype('float32') / 255
Y_train = np.round(Y_train,0)
Y_test = np.round(Y_test,0)
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
def saveModel(model):
model_json = model.to_json()
try:
os.makedirs('models')
except:
pass
fp = open('models/modelP.json','w')
fp.write(model_json)
model.save('models/modelW.h5')
def evaluateModel(model, X_test, Y_test, batchSize):
try:
os.makedirs('results')
except:
pass
yp = model.predict(x=X_test, batch_size=batchSize, verbose=1)
yp = np.round(yp,0)
# for i in range(10):
# plt.figure(figsize=(20,10))
# plt.subplot(1,3,1)
# plt.imshow(X_test[i])
# plt.title('Input')
# plt.subplot(1,3,2)
# plt.imshow(Y_test[i].reshape(Y_test[i].shape[0],Y_test[i].shape[1]))
# plt.title('Ground Truth')
# plt.subplot(1,3,3)
# plt.imshow(yp[i].reshape(yp[i].shape[0],yp[i].shape[1]))
# plt.title('Prediction')
# intersection = yp[i].ravel() * Y_test[i].ravel()
# union = yp[i].ravel() + Y_test[i].ravel() - intersection
# jacard = (np.sum(intersection)/np.sum(union))
# plt.suptitle('Jacard Index'+ str(np.sum(intersection)) +'/'+ str(np.sum(union)) +'='+str(jacard))
# plt.savefig('results/'+str(i)+'.png',format='png')
# plt.close()
jacard = 0
dice = 0
for i in range(len(Y_test)):
yp_2 = yp[i].ravel()
y2 = Y_test[i].ravel()
intersection = yp_2 * y2
union = yp_2 + y2 - intersection
jacard += (np.sum(intersection)/np.sum(union))
dice += (2. * np.sum(intersection) ) / (np.sum(yp_2) + np.sum(y2))
jacard /= len(Y_test)
dice /= len(Y_test)
print('Jacard Index : '+str(jacard))
print('Dice Coefficient : '+str(dice))
fp = open('models/log.txt','a')
fp.write(str(jacard)+'\n')
fp.close()
fp = open('models/best.txt','r')
best = fp.read()
fp.close()
if(jacard>float(best)):
print('***********************************************')
print('Jacard Index improved from '+str(best)+' to '+str(jacard))
print('***********************************************')
fp = open('models/best.txt','w')
fp.write(str(jacard))
fp.close()
saveModel(model)
def trainStep(model, X_train, Y_train, X_test, Y_test, epochs, batchSize):
for epoch in range(epochs):
print('Epoch : {}'.format(epoch+1))
model.fit(x=X_train, y=Y_train, batch_size=batchSize, epochs=1, verbose=1)
evaluateModel(model,X_test, Y_test,batchSize)
return model
###### model construct for (UNet MultiResUnet DCUNet CFPNetM ICNet ENET ESPNet)
model = CFPNetM(height=192, width=256, channels=3)
model.compile(optimizer='adam', loss=generalized_dice_loss, metrics=[dice_coef, jacard, 'accuracy'])
model.summary()
saveModel(model)
####### for use efficientnet_b0, inception_v3 and mobilenet_v2 as backbone, use thi code
# model = sm.Unet(backbone_name='efficientnetb0', # MobileNet v2 = 'mobilenetv2'
# # Inception v3 = 'inceptionv3'
# # EfficientNet_b0 = 'efficientnetb0'
# input_shape=(height,width, 3), classes=1)
# model.summary()
# model.compile('Adam', loss=sm.losses.bce_jaccard_loss, metrics=[sm.metrics.iou_score])
# saveModel(model)
##########################################################################################
fp = open('models/log.txt','w')
fp.close()
fp = open('models/best.txt','w')
fp.write('-1.0')
fp.close()
trainStep(model, X_train, Y_train, X_test, Y_test, epochs=1, batchSize=4)
##################### print result
# y_result = model.predict(x=X_test, batch_size=10, verbose=1)
# y_result = np.round(y_result,0)
# # path_result = 'D:/Brest SPIE/isic2018/fold1/result_icnet/'
# path_result = 'D:/CT/result_cfpnet/'
# # path_result = 'D:/Brest SPIE/DRIVE/exp5/result_icnet/'
# for i in range(14):
# cv2.imwrite(path_result+'seg_'+str(i+1)+'.png',y_result[i]*255) #show predict results
# cv2.imwrite(path_result+'img_'+str(i+1)+'.png',X_test[i]*255) #show predict results
# cv2.imwrite(path_result+'org_'+str(i+1)+'.png',Y_test[i]*255) # show the label
####################### speed test
# print('=========Speed Testing=========')
# start = time.time()
# y_result = model.predict(x=X_train, batch_size=1, verbose=1)
# end = time.time()
# spend_time = end-start
# speed_time = spend_time/489 * 1000
# fps = 489/spend_time
# print('Spend Time: [%.2f s / %d iter]' % (spend_time, 489))
# print('Speed Time: %.2f ms / iter FPS: %.2f' % (speed_time, fps))
######################### FLOPs
# def get_flops(model):
# run_meta = tf.RunMetadata()
# opts = tf.profiler.ProfileOptionBuilder.float_operation()
# # We use the Keras session graph in the call to the profiler.
# flops = tf.profiler.profile(graph=K.get_session().graph,
# run_meta=run_meta, cmd='op', options=opts)
# return flops.total_float_ops # Prints the "flops" of the model.
# # .... Define your model here ....
# print(get_flops(model))