-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN_train.py
115 lines (90 loc) · 3.28 KB
/
CNN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
### To train CNN for Classification
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras import optimizers, callbacks
import time, json, os
import matplotlib.pyplot as plt
AbsLoc = 'D:\dataset_root_directory'
train_data_dir = os.path.join(AbsLoc, 'data/train')
validation_data_dir = os.path.join(AbsLoc, 'data/validation')
# dimensions of our images.
img_width, img_height = 320, 320
nb_train_samples = 2340
nb_validation_samples = 260
epochs = 750
batch_size = 26
# initial
best_val_acc = 0
class checkpoint(callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
global best_val_acc
best_model_name = 'ModelWithBestVal_acc.h5'
now_val_acc = logs.get('val_acc')
if now_val_acc > best_val_acc:
best_val_acc = now_val_acc
self.model.save(os.path.join(AbsLoc, 'data/' + best_model_name)) # save the model with best val_acc
with open(os.path.join(AbsLoc, 'data/ModelWithBestVal_acc.txt'), 'w') as fw:
json.dump('best_val_acc = ' + str(best_val_acc), fw)
print('\n', 'Now best val_acc is: %f' % best_val_acc)
time_in = time.time() # record using time start
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.Nadam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004),
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
'''
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
'''
# No any augmentation
train_datagen = ImageDataGenerator()
test_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
check = checkpoint()
hist = model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
callbacks=[check])
f1 = open(os.path.join(AbsLoc, 'data/train_history.txt'), 'w')
json.dump(hist.history, f1)
f1.close()
model.save(os.path.join(AbsLoc, 'data/cnn_model.h5'))
time_out = time.time() # record using time end
print('\n', 'Time cost:', '\n', time_out-time_in)