-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdcgan3.py
205 lines (162 loc) · 7.75 KB
/
dcgan3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import print_function
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Nadam
from PIL import Image
import glob, numpy
import matplotlib.pyplot as plt
import time
import sys
import numpy as np
save_model_path = "saved_model_folder/dcgan_generator.h5"
rnd_len = 100 # random vector length for generator
############################### Build DCGAN models
class DCGAN():
def __init__(self):
self.img_rows = 320
self.img_cols = 320
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
optimizer = Nadam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
# The generator takes noise as input and generated imgs
z = Input(shape=(rnd_len,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The valid takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator) takes
# noise as input => generates images => determines validity
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
noise_shape = (rnd_len,)
model = Sequential()
model.add(Dense(256 * 20 * 20, activation="relu", input_shape=noise_shape))
model.add(Reshape((20, 20, 256)))
model.add(BatchNormalization(momentum=0.5))
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.5))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.5))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.5))
model.add(UpSampling2D())
model.add(Conv2D(32, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.5))
model.add(Conv2D(3, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
img_shape = (self.img_rows, self.img_cols, self.channels)
model = Sequential()
model.add(Conv2D(32, kernel_size=3, input_shape=img_shape, padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=12, save_interval=50):
############################### Load the dataset
image_list = []
for filename in glob.glob('input_dataset_folder/*.png'):
im = Image.open(filename)
reim = im.resize((320, 320), Image.ANTIALIAS)
image_list.append(reim)
image_stack = numpy.asarray(image_list[0].convert('RGB')) # first image in stack
image_stack = image_stack.transpose(2, 1, 0) # (x,y,3) to (3,x,y), if needed
image_stack = np.expand_dims(image_stack, axis=0) # (3,x,y) to (1,3,x,y)
for IM in image_list[1:]: # rest images in stack
IM = numpy.asarray(IM.convert('RGB'))
IM = IM.transpose(2, 1, 0) # (x,y,3) to (3,x,y), if needed
IM = np.expand_dims(IM, axis=0) # (3,x,y) to (1,3,x,y)
image_stack = numpy.concatenate((IM, image_stack), axis=0) # (1,3,x,y) to (n,3,x,y)
############################### Train DCGAN
X_train = image_stack
X_train = (X_train.astype(np.float32) - 127.5) / 127.5 # Rescale -1 to 1
half_batch = int(batch_size / 2)
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
# Sample noise and generate a half batch of new images
noise = np.random.normal(0, 1, (half_batch, rnd_len))
gen_imgs = self.generator.predict(noise)
# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, rnd_len))
# Train the generator (wants discriminator to mistake images as real)
g_loss = self.combined.train_on_batch(noise, np.ones((batch_size, 1)))
# Plot the progress
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100 * d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch)
def save_imgs(self, epoch): # print samples from generator
r, c = 3, 3
noise = np.random.normal(0, 1, (r * c, rnd_len))
gen_imgs = self.generator.predict(noise)
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c, figsize=(12, 12))
cnt = 0
for i in range(r):
for j in range(c):
axs[i, j].imshow(gen_imgs[cnt, :, :, :])
axs[i, j].axis('off')
cnt += 1
fig.savefig("output_images_folder/samples_%d.png" % epoch, dpi=100)
plt.close()
self.generator.save(save_model_path)
if __name__ == '__main__': # run
dcgan = DCGAN()
time_in = time.time() # record using time start
dcgan.train(epochs=100001, batch_size=30, save_interval=200)
time_out = time.time() # record using time end
print('\n', 'Time cost:', '\n', time_out-time_in)