-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpanplots.R
59 lines (50 loc) · 2.04 KB
/
panplots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
library(matrixStats)
panplots <- function(data, curve = "pan", iterations = 100) {
# This script will compute pangenome-related accumulation curves for a certain number of sampled genomes based
# on a user defined number of permutations.
# Arguments:
# data = a matrix with gene cluster presence-absence data with genomes as rows and gene clusters as columns
# curve = type of curve data to generate ("pan" for gene cluster accumulation plot, "core" for core genome
# accumulation plot, and "uniq" for unique gene clusters accumulation plot ("pan" by default))
# iterations = the number of random permutations to perform (100 by default)
nr_rows <- nrow(data);
nr_iterations <- iterations; #the number of iterations (100 by default)
#create empty matrix to store temp results
temp <- matrix(data=NA,nrow=nr_rows,ncol=nr_iterations)
if(curve == "core") {
## compute core_genome_accumulation_curve data for the number of iterations
for(times in 1:nr_iterations){
# random sampling of genomes
for (i in 2: nr_rows){
t=data[sample(nr_rows, i), ,drop=F]
temp[i,times]=length(which(colSums(t) == i))
}
}
}
if(curve == "pan") {
## compute gene_cluster_accumulation_curve data for the number of iterations
for(times in 1:nr_iterations){
# random sampling of genomes
for (i in 1: nr_rows){
t=data[sample(nr_rows, i), ,drop=F]
temp[i,times]=length(which(colSums(t) > 0))
}
}
}
if(curve == "uniq") {
## compute unique gene_cluster_accumulation_curve data for the number of iterations
for(times in 1:nr_iterations){
# random sampling of genomes
for (i in 2: nr_rows){
t=data[sample(nr_rows, i), ,drop=F]
temp[i,times]=length(which(colSums(t) == 1))
}
}
}
# summerize permutation results using "matrixStats" library
summary <- data.frame(genomes=c(1:nr_rows))
summary$mean=rowMeans2(temp[,c(-1)])
summary$sd=rowSds(temp[,c(-1)])
summary$group=deparse(substitute(data))
return(summary)
}