-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconanfile.py
686 lines (608 loc) · 33.9 KB
/
conanfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
from conans import ConanFile, CMake, tools
from conans.errors import ConanInvalidConfiguration
import glob
import os
import textwrap
required_conan_version = ">=1.43.0"
class LibtorchConan(ConanFile):
name = "libtorch"
description = "Tensors and Dynamic neural networks with strong GPU acceleration."
license = "BSD-3-Clause"
topics = ("libtorch", "pytorch", "machine-learning", "deep-learning", "neural-network", "gpu", "tensor")
homepage = "https://pytorch.org"
url = "https://github.com/conan-io/conan-center-index"
settings = "os", "arch", "compiler", "build_type"
options = {
"shared": [True, False],
"fPIC": [True, False],
"blas": ["eigen", "atlas", "openblas", "mkl", "veclib", "flame", "generic"], # generic means "whatever blas lib found"
"aten_parallel_backend": ["native", "openmp", "tbb"],
"with_cuda": [True, False],
"with_cudnn": [True, False],
"with_nvrtc": [True, False],
"with_tensorrt": [True, False],
"with_kineto": [True, False],
"with_rocm": [True, False],
"with_nccl": [True, False],
"with_fbgemm": [True, False],
"fakelowp": [True, False],
"with_ffmpeg": [True, False],
"with_gflags": [True, False],
"with_glog": [True, False],
"with_leveldb": [True, False],
"with_lmdb": [True, False],
"with_metal": [True, False],
"with_nnapi": [True, False],
"with_nnpack": [True, False],
"with_numa": [True, False],
"observers": [True, False],
"with_opencl": [True, False],
"with_opencv": [True, False],
"profiling": [True, False],
"with_qnnpack": [True, False],
"with_redis": [True, False],
"with_rocksdb": [True, False],
"with_snpe": [True, False],
"with_vulkan": [True, False],
"vulkan_shaderc_runtime": [True, False],
"vulkan_relaxed_precision": [True, False],
"with_xnnpack": [True, False],
"with_zmq": [True, False],
"with_zstd": [True, False],
"with_mkldnn": [True, False],
"distributed": [True, False],
"with_mpi": [True, False],
"with_gloo": [True, False],
"with_tensorpipe": [True, False],
"utilities": [True, False],
}
default_options = {
"shared": False,
"fPIC": True,
"blas": "openblas", # TODO: should be mkl on non mobile os
"aten_parallel_backend": "native",
"with_cuda": False,
"with_cudnn": True,
"with_nvrtc": False,
"with_tensorrt": False,
"with_kineto": False, # TODO: should be True
"with_rocm": False,
"with_nccl": True,
"with_fbgemm": False, # TODO: should be True
"fakelowp": False,
"with_ffmpeg": False,
"with_gflags": False,
"with_glog": False,
"with_leveldb": False,
"with_lmdb": False,
"with_metal": True,
"with_nnapi": False,
"with_nnpack": False, # TODO: should be True
"with_qnnpack": True,
"with_xnnpack": True,
"with_numa": True,
"observers": False,
"with_opencl": False,
"with_opencv": False,
"profiling": False,
"with_redis": False,
"with_rocksdb": False,
"with_snpe": False,
"with_vulkan": False,
"vulkan_shaderc_runtime": False,
"vulkan_relaxed_precision": False,
"with_zmq": False,
"with_zstd": False,
"with_mkldnn": False,
"distributed": True,
"with_mpi": True,
"with_gloo": False, # TODO: should be True
"with_tensorpipe": True,
"utilities": False,
}
short_paths = True
generators = "cmake", "cmake_find_package", "cmake_find_package_multi"
_cmake = None
@property
def _source_subfolder(self):
return "source_subfolder"
@property
def _build_subfolder(self):
return "build_subfolder"
def export_sources(self):
self.copy("CMakeLists.txt")
for patch in self.conan_data.get("patches", {}).get(self.version, []):
self.copy(patch["patch_file"])
def config_options(self):
# Change default options for several OS
if self.settings.os in ["Android", "iOS"]:
self.options.blas = "eigen"
if self.settings.os not in ["Linux", "Windows"]:
self.options.distributed = False
# Remove several options not supported for several OS
if self.settings.os == "Windows":
del self.options.fPIC
del self.options.with_nnpack
del self.options.with_qnnpack
del self.options.with_mpi
del self.options.with_tensorpipe
del self.options.with_kineto
if self.settings.os != "iOS":
del self.options.with_metal
if self.settings.os != "Android":
del self.options.with_nnapi
del self.options.with_snpe
if self.settings.os != "Linux":
del self.options.with_numa
def configure(self):
if self.options.shared:
del self.options.fPIC
if not self.options.with_cuda:
del self.options.with_cudnn
del self.options.with_nvrtc
del self.options.with_tensorrt
del self.options.with_kineto
if not (self.options.with_cuda or self.options.with_rocm):
del self.options.with_nccl
if not self.options.with_vulkan:
del self.options.vulkan_shaderc_runtime
del self.options.vulkan_relaxed_precision
if not self.options.with_fbgemm:
del self.options.fakelowp
if not self.options.distributed:
del self.options.with_mpi
del self.options.with_gloo
del self.options.with_tensorpipe
# numa static can't be linked into shared libs.
# Because Caffe2_detectron_ops* libs are always shared, we have to force
# libnuma shared even if libtorch:shared=False
if self.options.get_safe("with_numa"):
self.options["libnuma"].shared = True
def requirements(self):
self.requires("cpuinfo/cci.20201217")
self.requires("eigen/3.4.0")
self.requires("fmt/8.0.1")
self.requires("foxi/cci.20210217")
self.requires("onnx/1.8.1")
self.requires("protobuf/3.17.1")
if self._depends_on_sleef:
self.requires("sleef/3.5.1")
if self.options.blas == "openblas":
self.requires("openblas/0.3.17")
elif self.options.blas in ["atlas", "mkl", "flame"]:
raise ConanInvalidConfiguration("{} recipe not yet available in CCI".format(self.options.blas))
if self.options.aten_parallel_backend == "tbb":
self.requires("tbb/2020.3")
if self.options.with_cuda:
self.output.warn("cuda recipe not yet available in CCI, assuming that NVIDIA CUDA SDK is installed on your system")
if self.options.get_safe("with_cudnn"):
self.output.warn("cudnn recipe not yet available in CCI, assuming that NVIDIA CuDNN is installed on your system")
if self.options.get_safe("with_tensorrt"):
self.output.warn("tensorrt recipe not yet available in CCI, assuming that NVIDIA TensorRT SDK is installed on your system")
if self.options.get_safe("with_kineto"):
raise ConanInvalidConfiguration("kineto recipe not yet available in CCI")
if self.options.with_rocm:
raise ConanInvalidConfiguration("rocm recipe not yet available in CCI")
if self.options.with_fbgemm:
raise ConanInvalidConfiguration("fbgemm recipe not yet available in CCI")
self.requires("fbgemm/cci.20210309")
if self.options.with_ffmpeg:
raise ConanInvalidConfiguration("ffmpeg recipe not yet available in CCI")
if self.options.with_gflags:
self.requires("gflags/2.2.2")
if self.options.with_glog:
self.requires("glog/0.5.0")
if self.options.with_leveldb:
self.requires("leveldb/1.23")
if self.options.with_lmdb:
# should be part of OpenLDAP or packaged separately?
raise ConanInvalidConfiguration("lmdb recipe not yet available in CCI")
if self.options.get_safe("with_nnpack"):
raise ConanInvalidConfiguration("nnpack recipe not yet available in CCI")
if self.options.get_safe("with_qnnpack"):
self.requires("fp16/cci.20200514")
self.requires("fxdiv/cci.20200417")
self.requires("psimd/cci.20200517")
if self.options.with_xnnpack:
self.requires("xnnpack/cci.20211026")
if self.options.get_safe("with_nnpack") or self.options.get_safe("with_qnnpack") or self.options.with_xnnpack:
self.requires("pthreadpool/cci.20210218")
if self.options.get_safe("with_numa"):
self.requires("libnuma/2.0.14")
if self.options.with_opencl:
self.requires("opencl-headers/2020.06.16")
self.requires("opencl-icd-loader/2020.06.16")
if self.options.with_opencv:
self.requires("opencv/4.5.3")
if self.options.with_redis:
self.requires("hiredis/1.0.2")
if self.options.with_rocksdb:
self.requires("rocksdb/6.20.3")
if self.options.with_vulkan:
self.requires("vulkan-headers/1.2.198.0")
self.requires("vulkan-loader/1.2.198.0")
if self.options.get_safe("vulkan_shaderc_runtime"):
self.requires("shaderc/2021.1")
if self.options.with_zmq:
self.requires("zeromq/4.3.4")
if self.options.with_zstd:
self.requires("zstd/1.5.1")
if self.options.with_mkldnn:
raise ConanInvalidConfiguration("oneDNN (MKL-DNN) recipe not yet available in CCI")
if self.options.get_safe("with_mpi"):
self.requires("openmpi/4.1.0")
if self.options.get_safe("with_gloo"):
raise ConanInvalidConfiguration("gloo recipe not yet available in CCI")
if self.options.get_safe("with_tensorpipe"):
self.requires("tensorpipe/cci.20210316")
@property
def _depends_on_sleef(self):
return self.settings.compiler != "Visual Studio" and self.settings.os not in ["Android", "iOS"]
def validate(self):
if self.settings.compiler.get_safe("cppstd"):
tools.check_min_cppstd(self, 14)
if self.options.with_cuda and self.options.with_rocm:
raise ConanInvalidConfiguration("libtorch doesn't yet support simultaneously building with CUDA and ROCm")
if self.options.with_ffmpeg and not self.options.with_opencv:
raise ConanInvalidConfiguration("libtorch video support with ffmpeg also requires opencv")
if self.options.blas == "veclib" and not tools.is_apple_os(self.settings.os):
raise ConanInvalidConfiguration("veclib only available on Apple family OS")
if self.settings.os == "Linux" and self.settings.compiler == "clang" and self.settings.compiler.libcxx == "libc++":
raise ConanInvalidConfiguration("clang with libc++ can't build libtorch") # TODO: try to fix that
if self.options.distributed and self.settings.os not in ["Linux", "Windows"]:
self.output.warn("Distributed libtorch is not tested on {} and likely won't work".format(str(self.settings.os)))
if self.options.get_safe("with_numa") and not self.options["libnuma"].shared:
raise ConanInvalidConfiguration("libtorch requires libnuma shared. Set libnuma:shared=True, or disable " \
"numa with libtorch:with_numa=False")
def build_requirements(self):
if hasattr(self, "settings_build"):
self.build_requires("protobuf/3.17.1")
if self.options.with_vulkan and not self.options.vulkan_shaderc_runtime:
self.build_requires("shaderc/2021.1")
# FIXME: libtorch 1.8.0 requires:
# - python 3.6.2+ with pyyaml, dataclasses and typing_extensions libs
# or
# - python 3.7+ with pyyaml and typing_extensions libs
# or
# - python 3.8+ with pyyaml lib
# self.build_requires("cpython/3.9.1")
def source(self):
tools.get(**self.conan_data["sources"][self.version],
destination=self._source_subfolder, strip_root=True)
def _configure_cmake(self):
if self._cmake:
return self._cmake
self._cmake = CMake(self)
self._cmake.definitions["ATEN_NO_TEST"] = True
self._cmake.definitions["BUILD_BINARY"] = self.options.utilities
self._cmake.definitions["BUILD_DOCS"] = False
self._cmake.definitions["BUILD_CUSTOM_PROTOBUF"] = False
self._cmake.definitions["BUILD_PYTHON"] = False
self._cmake.definitions["BUILD_CAFFE2"] = True
self._cmake.definitions["BUILD_CAFFE2_OPS"] = True
self._cmake.definitions["BUILD_CAFFE2_MOBILE"] = False
self._cmake.definitions["CAFFE2_LINK_LOCAL_PROTOBUF"] = False
self._cmake.definitions["CAFFE2_USE_MSVC_STATIC_RUNTIME"] = self.settings.compiler.get_safe("runtime") in ["MT", "MTd", "static"]
self._cmake.definitions["BUILD_TEST"] = False
self._cmake.definitions["BUILD_STATIC_RUNTIME_BENCHMARK"] = False
self._cmake.definitions["BUILD_MOBILE_BENCHMARKS"] = False
self._cmake.definitions["BUILD_MOBILE_TEST"] = False
self._cmake.definitions["BUILD_JNI"] = False
self._cmake.definitions["BUILD_MOBILE_AUTOGRAD"] = False
self._cmake.definitions["INSTALL_TEST"] = False
self._cmake.definitions["USE_CPP_CODE_COVERAGE"] = False
self._cmake.definitions["COLORIZE_OUTPUT"] = True
self._cmake.definitions["USE_ASAN"] = False
self._cmake.definitions["USE_TSAN"] = False
self._cmake.definitions["USE_CUDA"] = self.options.with_cuda
self._cmake.definitions["USE_ROCM"] = self.options.with_rocm
self._cmake.definitions["CAFFE2_STATIC_LINK_CUDA"] = False
self._cmake.definitions["USE_CUDNN"] = self.options.get_safe("with_cudnn", False)
self._cmake.definitions["USE_STATIC_CUDNN"] = False
self._cmake.definitions["USE_FBGEMM"] = self.options.with_fbgemm
self._cmake.definitions["USE_KINETO"] = self.options.get_safe("with_kineto", False)
self._cmake.definitions["USE_FAKELOWP"] = self.options.get_safe("fakelowp", False)
self._cmake.definitions["USE_FFMPEG"] = self.options.with_ffmpeg
self._cmake.definitions["USE_GFLAGS"] = self.options.with_gflags
self._cmake.definitions["USE_GLOG"] = self.options.with_glog
self._cmake.definitions["USE_LEVELDB"] = self.options.with_leveldb
self._cmake.definitions["USE_LITE_PROTO"] = False
self._cmake.definitions["USE_LMDB"] = self.options.with_lmdb
self._cmake.definitions["USE_METAL"] = self.options.get_safe("with_metal", False)
self._cmake.definitions["USE_NATIVE_ARCH"] = False
self._cmake.definitions["USE_NCCL"] = self.options.get_safe("with_nccl", False)
self._cmake.definitions["USE_STATIC_NCCL"] = False
self._cmake.definitions["USE_SYSTEM_NCCL"] = False # technically we could create a recipe for nccl with 0 packages (because it requires CUDA at build time)
self._cmake.definitions["USE_NNAPI"] = self.options.get_safe("with_nnapi", False)
self._cmake.definitions["USE_NNPACK"] = self.options.get_safe("with_nnpack", False)
self._cmake.definitions["USE_NUMA"] = self.options.get_safe("with_numa", False)
self._cmake.definitions["USE_NVRTC"] = self.options.get_safe("with_nvrtc", False)
self._cmake.definitions["USE_NUMPY"] = False
self._cmake.definitions["USE_OBSERVERS"] = self.options.observers
self._cmake.definitions["USE_OPENCL"] = self.options.with_opencl
self._cmake.definitions["USE_OPENCV"] = self.options.with_opencv
self._cmake.definitions["USE_OPENMP"] = self.options.aten_parallel_backend == "openmp"
self._cmake.definitions["USE_PROF"] = self.options.profiling
self._cmake.definitions["USE_QNNPACK"] = False # QNNPACK is now integrated into libtorch and official repo
self._cmake.definitions["USE_PYTORCH_QNNPACK"] = self.options.get_safe("with_qnnpack", False) # is archived, so prefer to use vendored QNNPACK
self._cmake.definitions["USE_REDIS"] = self.options.with_redis
self._cmake.definitions["USE_ROCKSDB"] = self.options.with_rocksdb
self._cmake.definitions["USE_SNPE"] = self.options.get_safe("with_snpe", False)
self._cmake.definitions["USE_SYSTEM_EIGEN_INSTALL"] = True
self._cmake.definitions["USE_TENSORRT"] = self.options.get_safe("with_tensorrt", False)
self._cmake.definitions["USE_VULKAN"] = self.options.with_vulkan
self._cmake.definitions["USE_VULKAN_WRAPPER"] = False
self._cmake.definitions["USE_VULKAN_SHADERC_RUNTIME"] = self.options.get_safe("vulkan_shaderc_runtime", False)
self._cmake.definitions["USE_VULKAN_RELAXED_PRECISION"] = self.options.get_safe("vulkan_relaxed_precision", False)
self._cmake.definitions["USE_XNNPACK"] = self.options.with_xnnpack
self._cmake.definitions["USE_ZMQ"] = self.options.with_zmq
self._cmake.definitions["USE_ZSTD"] = self.options.with_zstd
self._cmake.definitions["USE_MKLDNN"] = self.options.with_mkldnn
self._cmake.definitions["USE_MKLDNN_CBLAS"] = False # This option has no logic and is useless in libtorch actually
self._cmake.definitions["USE_DISTRIBUTED"] = self.options.distributed
self._cmake.definitions["USE_MPI"] = self.options.get_safe("with_mpi", False)
self._cmake.definitions["USE_GLOO"] = self.options.get_safe("with_gloo", False)
self._cmake.definitions["USE_TENSORPIPE"] = self.options.get_safe("with_tensorpipe", False)
self._cmake.definitions["USE_TBB"] = self.options.aten_parallel_backend == "tbb"
self._cmake.definitions["ONNX_ML"] = True
self._cmake.definitions["HAVE_SOVERSION"] = True
self._cmake.definitions["USE_SYSTEM_LIBS"] = True
self._cmake.definitions["USE_LAPACK"] = False # TODO: add an option
self._cmake.definitions["BUILDING_WITH_TORCH_LIBS"] = True
self._cmake.definitions["BLAS"] = self._blas_cmake_option_value
self._cmake.definitions["MSVC_Z7_OVERRIDE"] = False
# Custom variables for our CMake wrapper
self._cmake.definitions["CONAN_LIBTORCH_USE_SLEEF"] = self._depends_on_sleef
self._cmake.definitions["CONAN_LIBTORCH_USE_PTHREADPOOL"] = self._use_nnpack_family
self._cmake.configure(build_folder=self._build_subfolder)
return self._cmake
@property
def _blas_cmake_option_value(self):
return {
"eigen": "Eigen",
"atlas": "ATLAS",
"openblas": "OpenBLAS",
"mkl": "MKL",
"veclib": "vecLib",
"flame": "FLAME",
"generic": "Generic"
}[str(self.options.blas)]
@property
def _use_nnpack_family(self):
return self.options.get_safe("with_nnpack") or self.options.get_safe("with_qnnpack") or self.options.with_xnnpack
def build(self):
if self.options.get_safe("with_snpe"):
self.output.warn("with_snpe is enabled. Pay attention that you should have properly set SNPE_LOCATION and SNPE_HEADERS CMake variables")
for patch in self.conan_data.get("patches", {}).get(self.version, []):
tools.patch(**patch)
# conflict with macros.h generated at build time
os.remove(os.path.join(self.build_folder, self._source_subfolder, "caffe2", "core", "macros.h"))
cmake = self._configure_cmake()
cmake.build()
def package(self):
self.copy("LICENSE", dst="licenses", src=self._source_subfolder)
cmake = self._configure_cmake()
cmake.install()
# TODO: Keep share/Aten/Declarations.yml?
tools.rmdir(os.path.join(self.package_folder, "share"))
tools.remove_files_by_mask(os.path.join(self.package_folder, "bin"), "*.pdb")
self._create_cmake_module_variables(
os.path.join(self.package_folder, self._module_file_rel_path)
)
@staticmethod
def _create_cmake_module_variables(module_file):
content = textwrap.dedent("""\
if(DEFINED Torch_FOUND)
set(TORCH_FOUND ${Torch_FOUND})
endif()
if(NOT DEFINED TORCH_INCLUDE_DIRS)
get_target_property(TORCH_INCLUDE_DIRS Torch::Torch INTERFACE_INCLUDE_DIRECTORIES)
endif()
if(NOT DEFINED TORCH_LIBRARIES)
set(TORCH_LIBRARIES "Torch::Torch")
endif()
""")
tools.save(module_file, content)
@property
def _module_subfolder(self):
return os.path.join("lib", "cmake")
@property
def _module_file_rel_path(self):
return os.path.join(self._module_subfolder,
"conan-official-{}-variables.cmake".format(self.name))
def package_info(self):
self.cpp_info.set_property("cmake_file_name", "Torch")
self.cpp_info.set_property("cmake_target_name", "Torch::Torch")
self.cpp_info.names["cmake_find_package"] = "Torch"
self.cpp_info.names["cmake_find_package_multi"] = "Torch"
def _lib_exists(name):
return True if glob.glob(os.path.join(self.package_folder, "lib", "*{}.*".format(name))) else False
def _add_whole_archive_lib(component, libname, shared=False):
if shared:
self.cpp_info.components[component].libs.append(libname)
else:
lib_folder = os.path.join(self.package_folder, "lib")
if self.settings.os == "Macos":
lib_fullpath = os.path.join(lib_folder, "lib{}.a".format(libname))
whole_archive = "-Wl,-force_load,{}".format(lib_fullpath)
elif self.settings.compiler == "Visual Studio":
lib_fullpath = os.path.join(lib_folder, "{}".format(libname))
whole_archive = "-WHOLEARCHIVE:{}".format(lib_fullpath)
else:
lib_fullpath = os.path.join(lib_folder, "lib{}.a".format(libname))
whole_archive = "-Wl,--whole-archive,{},--no-whole-archive".format(lib_fullpath)
self.cpp_info.components[component].exelinkflags.append(whole_archive)
self.cpp_info.components[component].sharedlinkflags.append(whole_archive)
def _sleef():
return ["sleef::sleef"] if self._depends_on_sleef else []
def _openblas():
return ["openblas::openblas"] if self.options.blas == "openblas" else []
def _tbb():
return ["tbb::tbb"] if self.options.aten_parallel_backend == "tbb" else []
def _fbgemm():
return ["fbgemm::fbgemm"] if self.options.with_fbgemm else []
def _ffmpeg():
return ["ffmpeg::ffmpeg"] if self.options.with_ffmpeg else []
def _gflags():
return ["gflags::gflags"] if self.options.with_gflags else []
def _glog():
return ["glog::glog"] if self.options.with_glog else []
def _leveldb():
return ["leveldb::leveldb"] if self.options.with_leveldb else []
def _nnpack():
return ["nnpack::nnpack"] if self.options.get_safe("with_nnpack") else []
def _xnnpack():
return ["xnnpack::xnnpack"] if self.options.with_xnnpack else []
def _pthreadpool():
return ["pthreadpool::pthreadpool"] if self.options.get_safe("with_nnpack") or self.options.get_safe("with_qnnpack") or self.options.with_xnnpack else []
def _libnuma():
return ["libnuma::libnuma"] if self.options.get_safe("with_numa") else []
def _opencl():
return ["opencl-headers::opencl-headers", "opencl-icd-loader::opencl-icd-loader"] if self.options.with_opencl else []
def _opencv():
return ["opencv::opencv"] if self.options.with_opencv else []
def _redis():
return ["hiredis::hiredis"] if self.options.with_redis else []
def _vulkan():
return ["vulkan-headers::vulkan-headers", "vulkan-loader::vulkan-loader"] if self.options.with_vulkan else []
def _shaderc():
return ["shaderc::shaderc"] if self.options.get_safe("vulkan_shaderc_runtime") else []
def _zeromq():
return ["zeromq::zeromq"] if self.options.with_zmq else []
def _zstd():
return ["zstd::zstd"] if self.options.with_zstd else []
def _onednn():
return ["onednn::onednn"] if self.options.with_mkldnn else []
def _openmpi():
return ["openmpi::openmpi"] if self.options.get_safe("with_mpi") else []
def _gloo():
return ["gloo::gloo"] if self.options.get_safe("with_gloo") else []
def _tensorpipe():
return ["tensorpipe::tensorpipe"] if self.options.get_safe("with_tensorpipe") else []
# torch
_add_whole_archive_lib("_libtorch", "torch", shared=self.options.shared)
self.cpp_info.components["_libtorch"].requires.append("libtorch_cpu")
# torch_cpu
_add_whole_archive_lib("libtorch_cpu", "torch_cpu", shared=self.options.shared)
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_c10")
## TODO: Eventually remove this workaround in the future
## We put all these external dependencies and system libs of torch_cpu in an empty component instead,
## due to "whole archive" trick. Indeed, conan doesn't honor libs order per component we expect in this case
## (conan generators put exelinkflags/sharedlinkflags after system/external libs)
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_cpu_link_order_workaround")
self.cpp_info.components["libtorch_cpu_link_order_workaround"].requires.extend(
["cpuinfo::cpuinfo", "eigen::eigen", "foxi::foxi"] +
_openblas() + _onednn() + _sleef() + _leveldb() + _openmpi() +
_gloo() + _redis() + _zstd() + _tensorpipe() + _opencv() +
_vulkan() + _shaderc() + _zeromq() + _ffmpeg()
)
if self.settings.os == "Linux":
self.cpp_info.components["libtorch_cpu_link_order_workaround"].system_libs.extend(["dl", "m", "pthread", "rt"])
if self.options.blas == "veclib":
self.cpp_info.components["libtorch_cpu_link_order_workaround"].frameworks.append("Accelerate")
# c10
self.cpp_info.components["libtorch_c10"].libs = ["c10"]
self.cpp_info.components["libtorch_c10"].requires.extend(
_gflags() + _glog() + _libnuma()
)
if self.settings.os == "Android":
self.cpp_info.components["libtorch_c10"].system_libs.append("log")
##------------------
## FIXME: let's put all build modules, include dirs, external dependencies (except protobuf) and system/frameworks libs in c10 for the moment
self.cpp_info.components["libtorch_c10"].builddirs.append(self._module_subfolder)
self.cpp_info.components["libtorch_c10"].set_property("cmake_build_modules", [self._module_file_rel_path])
self.cpp_info.components["libtorch_c10"].build_modules["cmake_find_package"] = [self._module_file_rel_path]
self.cpp_info.components["libtorch_c10"].build_modules["cmake_find_package_multi"] = [self._module_file_rel_path]
self.cpp_info.components["libtorch_c10"].includedirs.append(os.path.join("include", "torch", "csrc", "api", "include"))
self.cpp_info.components["libtorch_c10"].requires.extend(["fmt::fmt", "onnx::onnx"])
self.cpp_info.components["libtorch_c10"].requires.extend(
_tbb() + _fbgemm() + _nnpack() + _xnnpack() + _pthreadpool() +
_opencl()
)
##------------------
if self.options.shared:
## TODO: Eventually remove this workaround in the future
self.cpp_info.components["libtorch_cpu_link_order_workaround"].requires.append("protobuf::protobuf")
else:
# caffe2_protos
_add_whole_archive_lib("libtorch_caffe2_protos", "caffe2_protos")
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_caffe2_protos")
## TODO: Eventually remove this workaround in the future
self.cpp_info.components["libtorch_caffe2_protos"].requires.append("libtorch_caffe2_protos_link_order_workaround")
self.cpp_info.components["libtorch_caffe2_protos_link_order_workaround"].requires.append("protobuf::protobuf")
# Caffe2_perfkernels_avx
if _lib_exists("Caffe2_perfkernels_avx"):
_add_whole_archive_lib("libtorch_caffe2_perfkernels_avx", "Caffe2_perfkernels_avx", shared=self.options.shared)
self.cpp_info.components["libtorch_caffe2_perfkernels_avx"].requires.append("libtorch_c10")
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_caffe2_perfkernels_avx")
# Caffe2_perfkernels_avx2
if _lib_exists("Caffe2_perfkernels_avx2"):
_add_whole_archive_lib("libtorch_caffe2_perfkernels_avx2", "Caffe2_perfkernels_avx2", shared=self.options.shared)
self.cpp_info.components["libtorch_caffe2_perfkernels_avx2"].requires.append("libtorch_c10")
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_caffe2_perfkernels_avx2")
# Caffe2_perfkernels_avx512
if _lib_exists("Caffe2_perfkernels_avx512"):
_add_whole_archive_lib("libtorch_caffe2_perfkernels_avx512", "Caffe2_perfkernels_avx512", shared=self.options.shared)
self.cpp_info.components["libtorch_caffe2_perfkernels_avx512"].requires.append("libtorch_c10")
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_caffe2_perfkernels_avx512")
# caffe2_observers
if self.options.observers:
_add_whole_archive_lib("libtorch_caffe2_observers", "caffe2_observers", shared=self.options.shared)
self.cpp_info.components["libtorch_caffe2_observers"].requires.append("_libtorch")
# c10d
if self.options.distributed:
self.cpp_info.components["libtorch_c10d"].libs = ["c10d"] # always static
self.cpp_info.components["libtorch_c10d"].requires.extend(["_libtorch"] + _openmpi() + _gloo())
# process_group_agent & tensorpipe_agent
if self.options.get_safe("with_tensorpipe"):
self.cpp_info.components["libtorch_process_group_agent"].libs = ["process_group_agent"]
self.cpp_info.components["libtorch_process_group_agent"].requires.extend(["_libtorch", "libtorch_c10d"])
self.cpp_info.components["libtorch_tensorpipe_agent"].libs = ["tensorpipe_agent"]
self.cpp_info.components["libtorch_tensorpipe_agent"].requires.extend(["_libtorch", "libtorch_c10d", "fmt::fmt"] + _tensorpipe())
# caffe2_nvrtc
if self.options.with_cuda or self.options.with_rocm:
self.cpp_info.components["libtorch_caffe2_nvrtc"].libs = ["caffe2_nvrtc"]
if self.options.with_cuda:
# torch_cuda
_add_whole_archive_lib("libtorch_torch_cuda", "torch_cuda", shared=self.options.shared)
self.cpp_info.components["libtorch_torch_cuda"].requires.append("libtorch_c10_cuda")
self.cpp_info.components["_libtorch"].requires.append("libtorch_torch_cuda")
# c10_cuda
self.cpp_info.components["libtorch_c10_cuda"].libs = ["c10_cuda"]
self.cpp_info.components["libtorch_c10_cuda"].requires.append("libtorch_c10")
# caffe2_detectron_ops_gpu
if self.options.shared:
self.cpp_info.components["libtorch_caffe2_detectron_ops_gpu"].libs = ["caffe2_detectron_ops_gpu"]
self.cpp_info.components["libtorch_caffe2_detectron_ops_gpu"].requires.extend(["_libtorch", "libtorch_cpu", "libtorch_c10"])
elif self.options.with_rocm:
# torch_hip
_add_whole_archive_lib("libtorch_torch_hip", "torch_hip", shared=self.options.shared)
self.cpp_info.components["libtorch_torch_hip"].requires.append("libtorch_c10_hip")
self.cpp_info.components["_libtorch"].requires.append("libtorch_torch_hip")
# c10_hip
self.cpp_info.components["libtorch_c10_hip"].libs = ["c10_hip"]
self.cpp_info.components["libtorch_c10_hip"].requires.append("libtorch_c10")
# caffe2_detectron_ops_hip
if self.options.shared:
self.cpp_info.components["libtorch_caffe2_detectron_ops_hip"].libs = ["caffe2_detectron_ops_hip"]
self.cpp_info.components["libtorch_caffe2_detectron_ops_hip"].requires.extend(["_libtorch", "libtorch_cpu", "libtorch_c10"])
elif not self.settings.os == "iOS":
# caffe2_detectron_ops
if self.options.shared:
self.cpp_info.components["libtorch_caffe2_detectron_ops"].libs = ["caffe2_detectron_ops"]
self.cpp_info.components["libtorch_caffe2_detectron_ops"].requires.extend(["_libtorch", "libtorch_cpu", "libtorch_c10"])
# pytorch_qnnpack
if self.options.get_safe("with_qnnpack"):
self.cpp_info.components["libtorch_pytorch_qnnpack"].libs = ["pytorch_qnnpack"]
self.cpp_info.components["libtorch_pytorch_qnnpack"].requires.extend([
"cpuinfo::cpuinfo", "fp16::fp16", "fxdiv::fxdiv", "psimd::psimd", "pthreadpool::pthreadpool"
])
self.cpp_info.components["libtorch_cpu"].requires.append("libtorch_pytorch_qnnpack")
# caffe2_rocksdb
if self.options.with_rocksdb:
self.cpp_info.components["libtorch_caffe2_rocksdb"].libs = ["caffe2_rocksdb"]
self.cpp_info.components["libtorch_caffe2_rocksdb"].requires.extend(["_libtorch", "rocksdb::rocksdb"])
if self.options.utilities:
bin_path = os.path.join(self.package_folder, "bin")
self.output.info("Appending PATH environment variable: {}".format(bin_path))
self.env_info.PATH.append(bin_path)