Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now. #416

Open
LukeLIN-web opened this issue Oct 4, 2024 · 1 comment

Comments

@LukeLIN-web
Copy link

LukeLIN-web commented Oct 4, 2024

I runPYTHONPATH=. streamlit run scripts/demo/turbo.py

When I click load model

/usr/local/lib/python3.10/dist-packages/kornia/feature/lightglue.py:44: FutureWarning: torch.cuda.amp.custom_fwd(args...) is deprecated. Please use torch.amp.custom_fwd(args..., device_type='cuda') instead.
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now.
SpatialTransformer: Found context dims [2048] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [2048, 2048] now.
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1617: FutureWarning: clean_up_tokenization_spaces was not set. It will be set to True by default. This behavior will be deprecated in transformers v4.45, and will be then set to False by default. For more details check this issue: huggingface/transformers#31884
warnings.warn(
Initialized embedder #0: FrozenCLIPEmbedder with 123060480 params. Trainable: False
/usr/local/lib/python3.10/dist-packages/open_clip/factory.py:129: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
checkpoint = torch.load(checkpoint_path, map_location=map_location)

It seems not affect the results, but I am curious why?

@LukeLIN-web
Copy link
Author

I have another problem, Can scripts/demo/turbo.py support f16? When I use f32 model it will OOM. I only have 12G VRAM

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant