-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmars_powered_descent.py
450 lines (429 loc) · 16.2 KB
/
mars_powered_descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import numpy as np
import cvxpy as cp
import matplotlib.pyplot as plt
from matplotlib import gridspec
import jax.numpy as jnp
from jax import jacrev, grad, hessian, jit, vmap
from functools import partial
from jax.config import config
config.update("jax_enable_x64", True)
np.random.seed(1)
S = 21 # number of controls
N = 20 # number of samples
delta_N = 1e-5
N_scp_iters = 10 # number of SCP iterations
n_x = 7 # (rx,ry,rz,vx,vy,vz,m)
n_u = 4 # (ux,uy,uz,sigma) (sigma(t)=||u(t)|| under some conditions, see [Acikmese & Ploen, 2007])
class Rocket:
def __init__(self, N, S, delta_N, B_uncertainty=True):
self.N = N # number of samples
self.S = S # number of control switches
# Planning time horizon
self.T = 60. # sec
self.dt = self.T / (self.S-1)
# Initial / final states
self.n_x = 7
self.n_u = 4
# Values inspired from the Mars rover MSL Curiosity landing
# (up to sky-crane separation)
# https://arc.aiaa.org/doi/pdf/10.2514/1.A32866 (Steltzner et al., 2014)
# https://spaceflight101.com/msl/msl-landing-special/
self.x0 = np.array([
300, 0, 1500, 5, 0, -75.,
1800])
self.xg = np.array([
0, 0, 100, 0, 0, -10.])
# Parameters approx. from https://hal-ensta-paris.archives-ouvertes.fr//hal-03641631/document
# Clara Leparoux, Bruno Hérissé, Frédéric Jean, Optimal planetary landing with pointing and
# glide-slope constraints. 2022.
self.Thrust_max = 16000 # N
self.q = 8.0 # kg/s
self.umin = 0.3
self.umax = 0.8
self.g = 3.71 # m/s^2 (Mars)
self.gamma = 35.0 * (np.pi / 180.0) # glide slope
self.theta = 45.0 * (np.pi / 180.0) # max thrust angle
# Uncertainty
self.Cdrag = 1.0
self.beta0 = 1e1
self.beta1 = 2e-1
# Samples from Brownian motion
self.DWs = np.zeros((self.N,self.S,self.n_x))
if B_uncertainty == True:
for i in range(self.N):
for t in range(self.S):
self.DWs[i,t,:] = np.sqrt(self.dt)*np.random.randn(n_x)
# Constraints relaxation constant
self.delta_N = delta_N
@partial(jit, static_argnums=(0,))
def convert_Z_to_xs_us(self, Z):
S, N, n_x, n_u = self.S, self.N, self.n_x, self.n_u
us = Z[:(S-1)*n_u]
xs = Z[(S-1)*n_u:]
us = jnp.reshape(us, (n_u, S-1), 'F')
xs = jnp.reshape(xs, (n_x, N, S), 'F')
us = us.T # (S-1, n_u)
xs = jnp.moveaxis(xs, 0, -1) # (N, S, n_x)
return (xs, us)
@partial(jit, static_argnums=(0,))
def b(self, x, u):
Tmax, Cd, q = self.Thrust_max, self.Cdrag, self.q
v, mass = x[3:6], x[-1]
unorm = jnp.linalg.norm(u[:3])
p_dot = v
v_dot = Tmax*u[:3]/mass - jnp.array([0.,0.,self.g])
v_dot = v_dot + (1.0/mass)*(-Cd*jnp.abs(v)*v)
m_dot = -q * unorm * jnp.ones(1)
bvec = jnp.concatenate((
p_dot, v_dot, m_dot), axis=-1)
return bvec
@partial(jit, static_argnums=(0,))
def sigma(self, x, u):
b0, b1 = self.beta0, self.beta1
v, mass, unorm = x[3:6], x[-1], jnp.linalg.norm(u[:3])
sdiag = (1.0/mass) * (b0 + b1*v**2)
smat = jnp.zeros((self.n_x, self.n_x))
smat = smat.at[3:6, 3:6].set(jnp.diag(sdiag))
return smat
def initial_constraints(self):
S, N = self.S, self.N
x0, n_x, n_u = self.x0, self.n_x, self.n_u
nb_vars = (S-1)*n_u + S*N*n_x
Aineq = np.zeros((N*n_x, nb_vars))
for i in range(N):
idx_x0 = (S-1)*n_u + i*n_x
idx_x0n = idx_x0 + n_x
Aineq[i*n_x:(i+1)*n_x,idx_x0:idx_x0n] = np.eye(n_x)
lineq = np.hstack([self.x0 for i in range(N)])
uineq = np.hstack([self.x0 for i in range(N)])
return Aineq, lineq, uineq
def final_constraints(self):
S, N = self.S, self.N
xg, n_x, n_u = self.xg, self.n_x, self.n_u
nb_vars = (S-1)*n_u + S*N*n_x
Aineq = np.zeros((6, nb_vars))
for i in range(N):
idx_xf = (S-1)*n_u + (S-1)*N*n_x + i*n_x
idx_xfn = idx_xf + 6 # no final mass constraint
Aineq[:, idx_xf:idx_xfn] = np.eye(6) / N
lineq = xg - self.delta_N
uineq = xg + self.delta_N
return Aineq, lineq, uineq
@partial(jit, static_argnums=(0,))
def dynamics_constraints_jax(self, Z):
S, N, dt = self.S, self.N, self.dt
n_x, n_u = self.n_x, self.n_u
def dynamic_constraint(x, u, xn, w):
# modified Euler scheme
# Numerical integration of SDEs
# Renfeng Cao and Stephen B. Pope
# Journal of Computational Physics 185 (2003) 194–212
# https://tcg.mae.cornell.edu/pubs/Cao_P_JCP_03.pdf
x_mid = (x + 0.5 * dt * self.b(x, u))
x_pred = x + dt*self.b(x_mid, u) + self.sigma(x_mid, u) @ w
return (xn - x_pred)
xs, us = self.convert_Z_to_xs_us(Z) # (N, S, n_x) and (S-1, n_u)
Xs = xs[:, :-1, :]
Xns = xs[:, 1:, :]
Ws = jnp.array(self.DWs[:, :(S-1), :])
gs = vmap(vmap(dynamic_constraint), in_axes=(0, None, 0, 0))(
Xs, us, Xns, Ws)
return gs.flatten()
@partial(jit, static_argnums=(0,))
def dynamics_constraints_jax_dZ(self, Z):
return jacrev(self.dynamics_constraints_jax)(Z)
def dynamics_constraints(self, Zp):
Zp_jax = jnp.array(Zp)
gdyn_p = model.dynamics_constraints_jax(Zp_jax)
gdyn_dZ_p = model.dynamics_constraints_jax_dZ(Zp_jax)
Aeq = gdyn_dZ_p
leq = -gdyn_p + gdyn_dZ_p@Zp
ueq = leq
return Aeq.to_py(), leq.to_py(), ueq.to_py()
class convexified_problem:
def __init__(self, model):
n_x, n_u, S, N, dt = model.n_x, model.n_u, model.S, model.N, model.dt
nb_vars = (S-1)*n_u + S*N*n_x
self.n_x, self.n_u, self.S, self.N, self.dt = model.n_x, model.n_u, model.S, model.N, model.dt
self.model = model
self.nb_vars = nb_vars
def define(self, Zp):
n_x, n_u, S, N, dt = self.n_x, self.n_u, self.S, self.N, self.dt
nb_vars = (S-1)*n_u + S*N*n_x
model = self.model
nb_vars = self.nb_vars
# Define and solve the CVXPY problem
Z = cp.Variable(nb_vars)
# Objective
obj = 0.
# control
for t in range(S-1):
idx_ut = t*n_u
obj = obj + dt*Z[idx_ut+3]
# Final deviation to landing
# if model.xg=E[r_T], then
# sum_squares(r_T-model.xg) gives
# the trace of the covariance matrix
for i in range(N):
idx = (S-1)*n_u + (S-1)*N*n_x + i*n_x
r_T = Z[idx:(idx+6)]
obj = obj + 1e-2 * (1.0/N)*cp.sum_squares(r_T[:6]-model.xg[:6])
obj = cp.Minimize(obj)
# Constraints
Aeq_x0, leq_x0, ueq_x0 = model.initial_constraints()
Aeq_xf, leq_xf, ueq_xf = model.final_constraints()
Aeq_dyn, leq_dyn, _ = model.dynamics_constraints(Zp)
con = []
con.append(Aeq_x0@Z==leq_x0)
con.append(leq_xf <= Aeq_xf@Z)
con.append(Aeq_xf@Z <= ueq_xf)
con.append(Aeq_dyn@Z==leq_dyn)
# control
for t in range(S-1):
idx_ut = t*n_u
u_t = Z[idx_ut:(idx_ut+3)]
uz_t, sigma_t = Z[idx_ut+2], Z[idx_ut+3]
con.append(model.umin<=sigma_t)
con.append(sigma_t<=model.umax)
con.append(uz_t>=sigma_t*np.cos(model.theta))
# cp.SOC(t, x) creates the SOC constraint ||x||_2 <= t.
con.append(cp.SOC(sigma_t, u_t))
# altitude
tan_gamma = np.tan(model.gamma)
S_max = S-2
for t in range(S_max):
xy_t_avg, z_t_avg = 0, 0
for i in range(N):
idx_xt = (S-1)*n_u + t*N*n_x + i*n_x
xy_t = Z[idx_xt:idx_xt+2]
z_t = Z[idx_xt+2]
xy_t_avg += xy_t
z_t_avg += z_t
xy_t_avg = xy_t_avg / N
z_t_avg = z_t_avg / N
con.append( tan_gamma*xy_t_avg[0] - z_t_avg <= delta_N)
con.append( tan_gamma*xy_t_avg[1] - z_t_avg <= delta_N)
con.append(-tan_gamma*xy_t_avg[0] - z_t_avg <= delta_N)
con.append(-tan_gamma*xy_t_avg[1] - z_t_avg <= delta_N)
self.Z = Z
self.prob = cp.Problem(obj, con)
def solve(self):
self.prob.solve(solver=cp.ECOS, verbose=False)#, ignore_dpp=True)
def initial_guess(self):
n_x, n_u, S, N, dt = self.n_x, self.n_u, self.S, self.N, self.dt
# initial guess (linearization point) (straight-line)
Zp = np.zeros(self.nb_vars)
for t in range(S-1):
idx_ut = t*n_u
Zp[idx_ut:idx_ut+3] = (model.umin + model.umax) / 2.0
Zp[idx_ut+3] = np.linalg.norm(Zp[idx_ut:idx_ut+3])
for t in range(S):
for i in range(N):
idx_xt = (S-1)*n_u + t*N*n_x + i*n_x
alpha1 = ((S - 1) - t ) / (S - 1)
alpha2 = t / (S-1)
Zp[idx_xt:idx_xt+6] = model.x0[:6] * alpha1 + model.xg * alpha2 + 1e-6
Zp[idx_xt+6] = model.x0[-1] # mass
return Zp
def extract_solution(self):
xs, us = self.convert_Z_to_xs_us(self.Z.value)
return (self.Z.value, xs, us)
def convert_Z_to_xs_us(self, Z):
us = Z[:(S-1)*n_u]
xs = Z[(S-1)*n_u:]
us = np.reshape(us, (n_u, S-1), 'F')
xs = np.reshape(xs, (n_x, N, S), 'F')
us = us.T # (S-1, n_u)
xs = np.moveaxis(xs, 0, -1) # (N, S, n_x)
return (xs, us)
def error_criterion(self, Z, Zp):
err = np.linalg.norm(Z-Zp)/np.linalg.norm(Zp)
return err
# -----------------------------------------
model = Rocket(N, S, delta_N)
nb_vars = (S-1)*n_u + S*N*n_x
dt = model.T / (S-1)
# -----------------------------------------
# --------- with uncertainty --------------
print(">>> solving stochastic program")
print("if too slow, consider reducing the sample size N.")
convex_problem = convexified_problem(model)
Zp = convex_problem.initial_guess()
for scp_iter in range(N_scp_iters):
print("SCP iter. "+str(scp_iter+1)+"/"+str(N_scp_iters))
convex_problem.define(Zp)
convex_problem.solve()
Z, xs, us = convex_problem.extract_solution()
print("error =", convex_problem.error_criterion(Z, Zp))
Zp = Z.copy()
# -----------------------------------------
# --------- no uncertainty --------------
print(">>> solving deterministic program")
model = Rocket(N, S, delta_N, B_uncertainty=False)
convex_problem = convexified_problem(model)
Zp = convex_problem.initial_guess()
for scp_iter in range(N_scp_iters):
print("SCP iter. "+str(scp_iter+1)+"/"+str(N_scp_iters))
convex_problem.define(Zp)
convex_problem.solve()
Z, xs_det, us_det = convex_problem.extract_solution()
print("error =", convex_problem.error_criterion(Z, Zp))
Zp = Z.copy()
# -----------------------------------------
print("Stochastic: final mass =", np.mean(xs[:,-1,-1], axis=0), "[kg]")
print("Deterministic: final mass =", np.mean(xs_det[:,-1,-1], axis=0), "[kg]")
########### PLOT (deterministic) ###########################
# plot
fig = plt.figure(figsize=[10,3])
gs = gridspec.GridSpec(1, 3, width_ratios=[3, 3, 1])
plt.subplot(gs[0])
plt.scatter(model.x0[0],model.x0[2], color='k')
plt.scatter(model.xg[0],model.xg[2], color='k')
# mean trajectory and controls
x_traj_mean = np.zeros((S,n_x))
for t in range(S-1):
xt, ut = np.mean(xs_det[:,t,:],axis=0), us_det[t,:]
if t == 0:
plt.plot([xt[0], xt[0]+400*ut[0]],
[xt[2], xt[2]+400*ut[2]],
c='b', alpha=0.3,
label=r'$u(t)$')
else:
plt.plot([xt[0], xt[0]+400*ut[0]],
[xt[2], xt[2]+400*ut[2]],
c='b',alpha=0.3)
x_traj_mean[t,:] = xt.copy()
x_traj_mean[-1,:] = np.mean(xs_det[:,-1,:],axis=0)
# mean trajectory
plt.plot(x_traj_mean[:,0], x_traj_mean[:,2],
c='b', label=r'$\mathbb{E}[x_u(t)]$')
# glide-slope
xs_glideslope = [model.xg[0],model.xg[0]+np.max(xs_det[:,:,0])]
ys_glideslope = [0,0+(np.max(xs_det[:,:,0])-model.xg[0])*np.sin(model.gamma)]
plt.plot(xs_glideslope, ys_glideslope, 'r--')
plt.fill_between(xs_glideslope, [-100,-100], ys_glideslope, color='r', alpha=0.2)
plt.xlabel(r'$r_x$', fontsize=16)
plt.ylabel(r'$r_z$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid()
plt.subplot(gs[1])
plt.step(dt*np.arange(us_det.shape[0]),
np.linalg.norm(us_det[:,:3], axis=1, ord=2),
where='post')
plt.xlabel(r'$t$', fontsize=16)
plt.ylabel(r'$||u(t)||$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid()
plt.subplot(gs[2])
plt.plot(dt*np.arange(S), x_traj_mean[:,-1], c='b')
plt.grid()
plt.xlabel(r'$t$', fontsize=16)
plt.ylabel(r'$m(t)$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.tight_layout()
fig.savefig('figures/deterministic.png')
plt.close()
########### PLOT (stochastic) ########################
# plot
fig = plt.figure(figsize=[10,3])
gs = gridspec.GridSpec(1, 3, width_ratios=[3, 3, 1])
plt.subplot(gs[0])
plt.scatter(model.x0[0], model.x0[2], color='k')
plt.scatter(model.xg[0], model.xg[2], color='k')
# mean trajectory and controls
x_traj_mean = np.zeros((S,n_x))
for t in range(S-1):
xt, ut = np.mean(xs[:,t,:],axis=0), us[t,:]
if t == 0:
plt.plot([xt[0], xt[0]+400*ut[0]],
[xt[2], xt[2]+400*ut[2]],
c='b', alpha=0.3,
label=r'$u(t)$')
else:
plt.plot([xt[0], xt[0]+400*ut[0]],
[xt[2], xt[2]+400*ut[2]],
c='b',alpha=0.3)
x_traj_mean[t,:] = xt.copy()
x_traj_mean[-1,:] = np.mean(xs[:,-1,:],axis=0)
# mean trajectory
plt.plot(x_traj_mean[:,0], x_traj_mean[:,2],
c='b', label=r'$\mathbb{E}[x_u(t)]$')
# glide-slope
xs_glideslope = [model.xg[0],model.xg[0]+np.max(xs[:,:,0])]
ys_glideslope = [0,0+(np.max(xs[:,:,0])-model.xg[0])*np.sin(model.gamma)]
plt.plot(xs_glideslope, ys_glideslope, 'r--')
plt.fill_between(xs_glideslope, [-100,-100], ys_glideslope, color='r', alpha=0.2)
plt.xlabel(r'$r_x$', fontsize=16)
plt.ylabel(r'$r_z$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid()
plt.subplot(gs[1])
plt.step(dt*np.arange(us.shape[0]),
np.linalg.norm(us[:,:3], axis=1, ord=2),
where='post')
plt.xlabel(r'$t$', fontsize=16)
plt.ylabel(r'$||u(t)||$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid()
plt.subplot(gs[2])
plt.plot(dt*np.arange(S), x_traj_mean[:,-1], c='b')
plt.grid()
plt.xlabel(r'$t$', fontsize=16)
plt.ylabel(r'$m(t)$', fontsize=16)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.tight_layout()
fig.savefig('figures/stochastic.png')
plt.close()
########### MONTE-CARLO ####################################
N_MC = 10000
ws = np.zeros((N_MC, S-1, n_x))
for i in range(N_MC):
for t in range(S-1):
ws[i, t, :] = np.sqrt(model.dt)*np.random.randn(n_x)
@jit
def simulate_state_trajectory_monte_carlo(us, ws):
# us - (S-1, n_u) (control trajectory)
# ws - (S-1, n_x) (Brownian motion sample path)
xs = jnp.zeros((S, n_x))
xs = xs.at[0, :].set(model.x0)
for t in range(S-1):
xt, ut, dW = xs[t, :], us[t, :], ws[t, :]
x_mid = xt + 0.5 * dt * model.b(xt, ut)
xs = xs.at[t+1,: ].set(
xt +
dt * model.b(x_mid, ut) +
model.sigma(x_mid, ut) @ dW)
return xs
xs_MC = vmap(simulate_state_trajectory_monte_carlo,
in_axes=(None, 0))(us, ws)
xs_det_MC = vmap(simulate_state_trajectory_monte_carlo,
in_axes=(None, 0))(us_det, ws)
# plot results
N_MC_to_plot = 2000
fig = plt.figure(figsize=[6,6])
plt.grid(linestyle='--')
plt.scatter(
xs_det_MC[:N_MC_to_plot, -1, 0],
xs_det_MC[:N_MC_to_plot, -1, 2],
c='tab:orange', alpha=0.3, label='deterministic')
plt.scatter(
xs_MC[:N_MC_to_plot, -1, 0],
xs_MC[:N_MC_to_plot, -1, 2],
c='b', alpha=0.3, label='stochastic')
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.xlabel(r'$r_x(T)$', fontsize=18)
plt.ylabel(r'$r_z(T)$', fontsize=18)
plt.legend(fontsize=16)
fig.savefig('figures/generated_montecarlo.png')
plt.close()
print("Z-standard deviation, deterministic method:",
np.std(xs_det_MC[:, -1, 2]))
print("Z-standard deviation, stochastic method:",
np.std(xs_MC[:, -1, 2]))