diff --git a/adalflow/adalflow/core/generator.py b/adalflow/adalflow/core/generator.py index 662c35ac..f3618e80 100644 --- a/adalflow/adalflow/core/generator.py +++ b/adalflow/adalflow/core/generator.py @@ -59,7 +59,7 @@ log = logging.getLogger(__name__) -DEBUG_MODE = os.environ.get("DEBUG_MODE", True) +DEBUG_MODE = os.environ.get("DEBUG_MODE", False) PromptArgType = Dict[str, Union[str, Parameter]] @@ -659,7 +659,8 @@ def backward( # backward score to the demo parameter for pred in children_params: # if pred.requires_opt: - pred.set_score(response.score) + if response.score is not None: + pred.set_score(response.score) log.debug( f"backpropagate the score {response.score} to {pred.name}, is_teacher: {self.teacher_mode}" ) @@ -877,7 +878,8 @@ def _backward_through_all_predecessors( ) var_gradient.add_prompt(backward_engine_prompt_str) pred.add_gradient(var_gradient) - pred.set_score(response.score) + if response.score is not None: + pred.set_score(response.score) @staticmethod def _backward_through_one_predecessor( @@ -1024,7 +1026,8 @@ def _backward_through_one_predecessor( ) var_gradient.add_prompt(backward_engine_prompt_str) pred.add_gradient(var_gradient) - pred.set_score(response.score) + if response.score is not None: + pred.set_score(response.score) def _run_callbacks( self, diff --git a/adalflow/adalflow/optim/grad_component.py b/adalflow/adalflow/optim/grad_component.py index 312dac04..32e986f1 100644 --- a/adalflow/adalflow/optim/grad_component.py +++ b/adalflow/adalflow/optim/grad_component.py @@ -18,6 +18,7 @@ ) from adalflow.optim.types import ParameterType from adalflow.core.types import GeneratorOutput +from adalflow.utils import printc import json @@ -212,7 +213,8 @@ def backward(self, *, response: "Parameter", id: str = None, **kwargs): pred.backward_engine_disabled = True for _, pred in enumerate(children_params): - pred.set_score(response.score) + if response.score is not None: + pred.set_score(response.score) if pred.param_type == ParameterType.DEMOS: pred.add_score_to_trace( @@ -377,6 +379,8 @@ def _backward_through_one_predecessor( metadata: Dict[str, str] = None, ): if not pred.requires_opt: + if response.score is not None: + pred.set_score(response.score) log.debug( f"EvalFnToTextLoss: Skipping {pred} as it does not require optimization." ) @@ -492,7 +496,8 @@ def _backward_through_one_predecessor( # backward the end to end score # TODO: not really useful - pred.set_score(response.score) + if response.score is not None: + pred.set_score(response.score) pred.set_gt(ground_truth) print(f"pred: {pred.name}, gt: {ground_truth}") # print(f"setting pred name {pred.name} score to {response.data}") @@ -533,9 +538,11 @@ def backward(self, *, response: "OutputParameter", id: str = None, **kwargs): else: for _, pred in enumerate(children_params): + if response.score is not None: + pred.set_score(response.score) + printc(f"score score for pred name: {pred.name}") if not pred.requires_opt: continue - pred.set_score(response.score) if pred.param_type == ParameterType.DEMOS: pred.add_score_to_trace( diff --git a/adalflow/adalflow/optim/parameter.py b/adalflow/adalflow/optim/parameter.py index 0cd48b62..617c00ad 100644 --- a/adalflow/adalflow/optim/parameter.py +++ b/adalflow/adalflow/optim/parameter.py @@ -615,7 +615,9 @@ def set_score(self, score: float): But this score is only used to relay the score to the demo parametr. """ if not isinstance(score, float): - raise ValueError(f"score is not float, but {type(score)}") + raise ValueError( + f"score is not float, but {type(score)}, parameter name: {self.name}" + ) self.score = score def add_dataclass_to_trace(self, trace: DataClass, is_teacher: bool = True): diff --git a/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py b/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py index 25e6895f..6df51a9a 100644 --- a/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py +++ b/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py @@ -193,6 +193,8 @@ def _backward_through_one_predecessor( metadata: Dict[str, str] = None, ): if not pred.requires_opt: + if response.score is not None: + pred.set_score(response.score) log.debug( f"EvalFnToTextLoss: Skipping {pred} as it does not require optimization." ) @@ -308,7 +310,8 @@ def _backward_through_one_predecessor( # backward the end to end score # TODO: not really useful - pred.set_score(response.data) + if response.score is not None: + pred.set_score(response.score) pred.set_gt(ground_truth) print(f"pred: {pred.name}, gt: {ground_truth}") # print(f"setting pred name {pred.name} score to {response.data}") diff --git a/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py b/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py index f2a07a09..81b75d1f 100644 --- a/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py +++ b/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py @@ -337,7 +337,7 @@ def __init__(self, model_client, model_kwargs, passages_per_hop=3, max_hops=2): data=task_desc_str, # data=trained_task_desc_strs[i], role_desc=f"Task description for {i+1}th LLM as a query generator", - requires_opt=True, + requires_opt=False, param_type=ParameterType.PROMPT, ), "output_format_str": self.data_parser.get_output_format_str(),