-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask-spacetime-simulator.py
204 lines (168 loc) · 7.52 KB
/
flask-spacetime-simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from flask import Flask, render_template, request, jsonify, send_file
import numpy as np
from scipy.integrate import odeint
import matplotlib
matplotlib.use('Agg') # Required for headless environments
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, writers
from datetime import datetime
app = Flask(__name__)
# Configure for Railway
PORT = os.environ.get('PORT', 5000)
HOST = '0.0.0.0'
# Ensure upload directory exists
app.config['UPLOAD_FOLDER'] = 'static/outputs'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Create an empty .gitkeep file in the outputs directory
with open(os.path.join(app.config['UPLOAD_FOLDER'], '.gitkeep'), 'w') as f:
pass
class SpacetimeSimulator:
def __init__(self, name, metric_tensor_func, dimensions=4):
self.name = name
self.metric_tensor_func = metric_tensor_func
self.dimensions = dimensions
self.dt = 0.1
def metric_tensor(self, coordinates):
return self.metric_tensor_func(coordinates)
def christoffel_symbols(self, coordinates):
h = 1e-5
gamma = np.zeros((self.dimensions, self.dimensions, self.dimensions))
try:
for mu in range(self.dimensions):
for nu in range(self.dimensions):
for sigma in range(self.dimensions):
dg_mu = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[mu])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[mu])) / (2*h)
dg_nu = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[nu])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[nu])) / (2*h)
dg_sigma = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[sigma])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[sigma])) / (2*h)
g = self.metric_tensor(coordinates)
g_inv = np.linalg.inv(g)
for rho in range(self.dimensions):
gamma[mu][nu][sigma] += 0.5 * g_inv[mu][rho] * (dg_nu[rho][sigma] + dg_sigma[rho][nu] - dg_sigma[nu][rho])
except np.linalg.LinAlgError:
pass
return gamma
def geodesic_equation(self, state, t):
x = state[:self.dimensions]
v = state[self.dimensions:]
dxdt = v
dvdt = -np.einsum('ijk,j,k->i', self.christoffel_symbols(x), v, v)
return np.concatenate([dxdt, dvdt])
def simulate_geodesic(self, initial_position, initial_velocity, num_steps):
initial_state = np.concatenate([initial_position, initial_velocity])
t = np.linspace(0, num_steps * self.dt, num_steps)
solution = odeint(self.geodesic_equation, initial_state, t)
return solution
def generate_simulation_plot(self, initial_positions, initial_velocities, num_steps):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"{app.config['UPLOAD_FOLDER']}/{self.name}_{timestamp}.mp4"
fig = plt.figure(figsize=(15, 10))
ax1 = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot(122)
geodesics = [self.simulate_geodesic(pos, vel, num_steps)
for pos, vel in zip(initial_positions, initial_velocities)]
def update(frame):
ax1.clear()
ax1.set_xlim(-10, 10)
ax1.set_ylim(-10, 10)
ax1.set_zlim(-10, 10)
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Z')
ax1.set_title(f'{self.name} Spacetime (t={frame*self.dt:.2f})')
for geodesic in geodesics:
ax1.plot(geodesic[:frame, 1], geodesic[:frame, 2], geodesic[:frame, 3])
ax1.scatter(geodesic[frame, 1], geodesic[frame, 2], geodesic[frame, 3], s=50)
ax2.clear()
ax2.set_title('Metric Tensor Components')
coords = geodesics[0][frame, :4]
metric = self.metric_tensor(coords)
im = ax2.imshow(metric, cmap='coolwarm', interpolation='nearest')
plt.colorbar(im, ax=ax2)
anim = FuncAnimation(fig, update, frames=num_steps, interval=50, blit=False)
writer = writers['ffmpeg'](fps=15, metadata=dict(artist='SpacetimeSimulator'), bitrate=1800)
anim.save(output_file, writer=writer)
plt.close()
return output_file
def create_preset_spacetimes():
def schwarzschild_metric(coordinates):
t, x, y, z = coordinates[:4]
r = np.sqrt(x**2 + y**2 + z**2)
Rs = 2 # Schwarzschild radius
factor = 1 - Rs / (r + Rs)
return np.diag([-factor, 1/factor, r**2, r**2 * np.sin(np.arccos(z/(r+1e-10)))**2])
def ads_metric(coordinates):
t, x, y, z = coordinates[:4]
L = 1 # AdS radius
r2 = x**2 + y**2 + z**2
factor = L**2 / (L**2 + r2)
return np.diag([-1/factor, factor, factor, factor])
def godel_metric(coordinates):
t, x, y, z = coordinates[:4]
a = 1 # Gödel parameter
g00 = -1
g11 = g22 = 1
g33 = -1/2 * np.exp(2*a*x)
g03 = g30 = np.exp(a*x)
metric = np.diag([g00, g11, g22, g33])
metric[0, 3] = metric[3, 0] = g03
return metric
return {
"Schwarzschild": SpacetimeSimulator("Schwarzschild", schwarzschild_metric),
"Anti-de Sitter": SpacetimeSimulator("Anti-de Sitter", ads_metric),
"Gödel": SpacetimeSimulator("Gödel", godel_metric)
}
# Global variable to store spacetimes
SPACETIMES = create_preset_spacetimes()
@app.route('/')
def index():
return render_template('index.html', spacetimes=SPACETIMES.keys())
@app.route('/simulate', methods=['POST'])
def simulate():
try:
spacetime_name = request.form['spacetime']
num_steps = int(request.form.get('num_steps', 200))
if spacetime_name not in SPACETIMES:
return jsonify({'error': 'Invalid spacetime selected'}), 400
spacetime = SPACETIMES[spacetime_name]
# Default initial conditions
initial_positions = [
np.array([0, 5, 0, 0]),
np.array([0, -5, 0, 0]),
np.array([0, 0, 5, 0])
]
initial_velocities = [
np.array([1, 0, 0.5, 0]),
np.array([1, 0, -0.5, 0]),
np.array([1, -0.5, 0, 0])
]
output_file = spacetime.generate_simulation_plot(
initial_positions, initial_velocities, num_steps)
return jsonify({
'status': 'success',
'video_path': output_file
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/custom_spacetime', methods=['POST'])
def create_custom_spacetime():
try:
name = request.form['name']
metric_func_str = request.form['metric_function']
# Create the metric function from the string
# Note: This is potentially dangerous in a production environment
metric_func = eval(f"lambda coordinates: {metric_func_str}")
# Create and store the new spacetime
SPACETIMES[name] = SpacetimeSimulator(name, metric_func)
return jsonify({
'status': 'success',
'message': f'Created new spacetime: {name}'
})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)