-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
153 lines (125 loc) · 5.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import print_function
import numpy as np
import face_recognition
import argparse
import cv2
import os
import pickle
from PIL import Image, ImageFont, ImageDraw, ImageEnhance
parser = argparse.ArgumentParser()
parser.add_argument('--with_draw', help='do draw?', default='True')
args = parser.parse_args()
net = cv2.dnn.readNetFromCaffe('./models/deploy.prototxt.txt', './models/res10_300x300_ssd_iter_140000.caffemodel')
knn_clf = pickle.load(open('./models/fr_knn.pkl', 'rb'))
def adjust_gamma(image, gamma=1.0):
# build a lookup table mapping the pixel values [0, 255] to
# their adjusted gamma values
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
def preprocess(img):
### analysis
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
for i in range(1):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if gray_img.mean() < 130:
img = adjust_gamma(img, 1.5)
else:
break
return img
# vc = cv2.VideoCapture('./data/TAEYANG_ONLY_LOOK_AT_ME_MV.mp4')
vc = cv2.VideoCapture('./data/gd_and_ty.mp4')
length = int(vc.get(cv2.CAP_PROP_FRAME_COUNT))
print ('length :', length)
if args.with_draw == 'True':
cv2.namedWindow('show', 0)
for idx in range(length):
img_bgr = vc.read()[1]
if img_bgr is None:
break
# if idx%3 != 0: continue
# if idx < 200: continue
start = cv2.getTickCount()
### preprocess
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
img_bgr_ori = img_bgr.copy()
img_bgr = preprocess(img_bgr)
### detection
border = (img_bgr.shape[1] - img_bgr.shape[0])//2
img_bgr = cv2.copyMakeBorder(img_bgr,
border, # top
border, # bottom
0, # left
0, # right
cv2.BORDER_CONSTANT,
value=(0,0,0))
(h, w) = img_bgr.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(img_bgr, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
### bbox
list_bboxes = []
list_confidence = []
# list_dlib_rect = []
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence < 0.6:
continue
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(l, t, r, b) = box.astype("int") # l t r b
original_vertical_length = b-t
t = int(t + (original_vertical_length)*0.15) - border
b = int(b - (original_vertical_length)*0.05) - border
margin = ((b-t) - (r-l))//2
l = l - margin if (b-t-r+l)%2 == 0 else l - margin - 1
r = r + margin
refined_box = [t,r,b,l]
list_bboxes.append(refined_box)
list_confidence.append(confidence)
### facenet
face_encodings = face_recognition.face_encodings(img_rgb, list_bboxes)
closest_distances = knn_clf.kneighbors(face_encodings, n_neighbors=1)
is_recognized = [closest_distances[0][i][0] <= 0.4 for i in range(len(list_bboxes))]
list_reconized_face = [(pred, loc, conf) if rec else ("unknown", loc, conf) for pred, loc, rec, conf in zip(knn_clf.predict(face_encodings), list_bboxes, is_recognized, list_confidence)]
# print (list_reconized_face)
time = (cv2.getTickCount() - start) / cv2.getTickFrequency() * 1000
print ('%d, elapsed time: %.3fms'%(idx,time))
### blurring
img_bgr_blur = img_bgr_ori.copy()
for name, bbox, conf in list_reconized_face:
t,r,b,l = bbox
if name == 'unknown':
face = img_bgr_blur[t:b, l:r]
small = cv2.resize(face, None, fx=.05, fy=.05, interpolation=cv2.INTER_NEAREST)
blurred_face = cv2.resize(small, (face.shape[:2]), interpolation=cv2.INTER_NEAREST)
img_bgr_blur[t:b, l:r] = blurred_face
### draw rectangle bbox
if args.with_draw == 'True':
source_img = Image.fromarray(img_bgr_ori)
draw = ImageDraw.Draw(source_img)
for name, bbox, confidence in list_reconized_face:
t,r,b,l = bbox
# print (int((r-l)/img_bgr_ori.shape[1]*100))
font_size = int((r-l)/img_bgr_ori.shape[1]*100)
draw.rectangle(((l,t),(r,b)), outline=(0,255,128))
draw.rectangle(((l,t-font_size-2),(r,t+2)), fill=(0,255,128))
draw.text((l, t - font_size), name, font=ImageFont.truetype('./BMDOHYEON_TTF.TTF', font_size), fill=(0,0,0,0))
show = np.asarray(source_img)
cv2.imshow('show', show)
cv2.imshow('blur', img_bgr_blur)
key = cv2.waitKey(30)
if key == 27:
break
### opencv text, box drawing
# cv2.rectangle(img_bgr_blur, (l, t), (r, b), (0, 255, 0), 2)
# cv2.rectangle(img_bgr_ori, (l, t), (r, b), (0, 255, 128), 2)
# text = "%s: %.2f" % (name,confidence)
# text_size, base_line = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
# y = t #- 1 if t - 1 > 1 else t + 1
# cv2.rectangle(img_bgr_ori,
# (l,y-text_size[1]),(l+text_size[0], y+base_line), (0,255,0), -1)
# cv2.putText(img_bgr_ori, text, (l, y),
# cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)