-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathbert_for_sequence_classification_example.py
114 lines (101 loc) · 4.59 KB
/
bert_for_sequence_classification_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (C) 2020 THL A29 Limited, a Tencent company.
# All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may
# not use this file except in compliance with the License. You may
# obtain a copy of the License at
# https://opensource.org/licenses/BSD-3-Clause
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" basis,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# See the AUTHORS file for names of contributors.
# import related package
import turbo_transformers
from turbo_transformers import PoolingType
from turbo_transformers import ReturnType
# import the class of the acceleration model. here is the example of BertForSequenceClassification.
from transformers.models.bert.modeling_bert import BertModel as TorchBertModel
from transformers import BertTokenizer
from transformers.models.bert.modeling_bert import (
BertForSequenceClassification as TorchBertForSequenceClassification, )
import os
import torch
from typing import Optional
# TODO(jiarufang) developed under v0.1.0, after that not tested.
# Contact me if you find it is wrong.
class BertForSequenceClassification: # create a new class for speeding up
def __init__(
self, bertmodel, classifier
): # the realization of the init function(we can just copy it)
self.bert = bertmodel
self.classifier = classifier
def __call__(
self, # the realization of the call function(we can just copy it)
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
pooling_type=PoolingType.FIRST,
return_type=None,
):
bert_outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
pooling_type,
return_type=ReturnType.TORCH,
)
pooled_output = bert_outputs[1]
logits = self.classifier(
pooled_output
) # It's the output of classifier, if User want to output the other type, he can define them after that.
return logits
@staticmethod
def from_torch(
model: TorchBertModel,
device: Optional[torch.device] = None # from_torch函数实现
):
if device is not None and "cuda" in device.type and torch.cuda.is_available(
):
model.to(device)
bertmodel = turbo_transformers.BertModel.from_torch(model.bert)
# We can copy the following code and do not change it
# Notice: classifier is the class member of BertForSequenceClassification. If user define the other class member,
# they need modify it here.
return BertForSequenceClassification(bertmodel, model.classifier)
@staticmethod
def from_pretrained(model_id_or_path: str,
device: Optional[torch.device] = None):
# First, Use the function of from_pretrained to load the model you trained.
torch_model = TorchBertForSequenceClassification.from_pretrained(
model_id_or_path)
# Then, Use the init function of the acceleration model to get it.
model = BertForSequenceClassification.from_torch(torch_model, device)
model._torch_model = torch_model # prevent destroy torch model.
return model
# use 4 threads for BERT inference
turbo_transformers.set_num_threads(4)
model_id = os.path.join(os.path.dirname(__file__),
"bert_model") # the model of huggingface's path
tokenizer = BertTokenizer.from_pretrained(
model_id) # the initialization of tokenizer
turbo_model = BertForSequenceClassification.from_pretrained(
model_id,
torch.device("cpu:0")) # the initialization of the acceleration model
# predict after loading the model
text = "Sample input text"
inputs = tokenizer.encode_plus(text,
add_special_tokens=True,
return_tensors="pt")
# turbo_result holds the returned logits from TurboTransformers model
turbo_result = turbo_model(**inputs)
torch_model = TorchBertForSequenceClassification.from_pretrained(model_id)
# torch_result holds the returned logits from original Transformers model
torch_result = torch_model(**inputs)[0]
print(turbo_result)
# tensor([[0.2716, 0.0318]], grad_fn=<AddmmBackward>)
print(
torch_result) # torch_result and turbo_result should hold the same logits
# tensor([[0.2716, 0.0318]], grad_fn=<AddmmBackward>)