-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathroberta_example.py
63 lines (50 loc) · 2.07 KB
/
roberta_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright (C) 2020 THL A29 Limited, a Tencent company.
# All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may
# not use this file except in compliance with the License. You may
# obtain a copy of the License at
# https://opensource.org/licenses/BSD-3-Clause
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" basis,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# See the AUTHORS file for names of contributors.
import unittest
import torch
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaConfig
import numpy
import turbo_transformers
import sys
import os
def test(use_cuda):
torch.set_grad_enabled(False)
torch.set_num_threads(4)
turbo_transformers.set_num_threads(4)
test_device = torch.device('cuda:0') if use_cuda else \
torch.device('cpu:0')
cfg = RobertaConfig()
torch_model = RobertaModel(cfg)
torch_model.eval()
if torch.cuda.is_available():
torch_model.to(test_device)
turbo_model = turbo_transformers.RobertaModel.from_torch(
torch_model, test_device)
input_ids = torch.randint(low=0,
high=cfg.vocab_size - 1,
size=(1, 10),
dtype=torch.long,
device=test_device)
torch_result = torch_model(input_ids)
torch_result_final = torch_result[0].cpu().numpy()
turbo_result = turbo_model(input_ids)
turbo_result_final = turbo_result[0].cpu().numpy()
# See the differences
# print(numpy.size(torch_result_final), numpy.size(turbo_result_final))
print(torch_result_final - turbo_result_final)
assert (numpy.allclose(torch_result_final,
turbo_result_final,
atol=1e-3,
rtol=1e-3))
if __name__ == "__main__":
test(use_cuda=False)