-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDC_vaccines_rep.R
80 lines (72 loc) · 4.43 KB
/
DC_vaccines_rep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Plot 1
library(readr)
library(ggplot2)
model_df <- read_csv("plot_1.csv")
ggplot(model_df[model_df$country %in% c("United States",
"United Kingdom", "Germany",
"European Union (average)",
"France", "Italy", "Canada", "Spain"
) & model_df$date <= Sys.Date(), ],
aes(x=date, y=total_doses/population, col = country))+
geom_line()+
geom_line(data = model_df[model_df$country %in% c("United States", "United Kingdom", "Germany", "European Union (average)", "France", "Italy", "Canada", "Spain") & model_df$date >= Sys.Date(), ], aes(linetype = "projected"), linetype = 2)+
theme_minimal()+
theme(legend.title = element_blank())+xlab("Sources: Our World in Data, The Economist\n *explanation on dotted line = 'Projected by The Economist based on model including country's cumulative doses administered to date'\nLabel: 'Given current trends, The EU will overtake America in vaccinations administered per person on July 14th" )+ylab("")+ggtitle("Unflatten the curve\nTotal covid-19 vaccinations administered, per person, December 2020 to July 2021")
ggsave("Unflatten.png", width = 8, height = 5)
# Plot 2:
library(readr)
pdat <- read_csv("plot_2_3.csv")
pdat$country[pdat$country == "European Union (average)"] <- "European Union"
ggplot(pdat,
aes(x=date, y=daily_vaccinations_per_100k/1000, col = country))+
geom_line()+
theme_minimal()+theme(legend.title = element_blank())+
ylab("")+xlab("")+ggtitle("Jab sessions\nPopulation vaccinated per day, %, 7-day average")+xlab("Source: Our World in Data")
ggsave("jab_sessions.png", width = 8, height = 5)
# Plot 3:
library(readr)
pdat <- read_csv("plot_2_3.csv")
ggplot(pdat[pdat$country %in% c("United Kingdom", "United States", "European Union (average)"), ],
aes(x=date))+
geom_area(aes(y=vaccinated_pct, fill = "First dose"))+
geom_area(aes(y=fully_vaccinated_pct, fill = "Fully vaccinated"))+
theme_minimal()+theme(legend.title = element_blank())+
theme(legend.position = "right")+
ylab("")+xlab("")+ggtitle("Giant steps\nVaccination rates, %")+facet_grid(.~country)+xlab("Source: Our World in Data")
ggsave("giant_steps.png", width = 8, height = 3)
# Plot 1
library(readr)
library(ggplot2)
model_df <- read_csv("plot_1.csv")
ggplot(model_df[model_df$country %in% c("United States",
"United Kingdom", "Germany",
"European Union (average)",
"France", "Italy", "Canada", "Spain"
) & model_df$date <= Sys.Date(), ],
aes(x=date, y=total_doses/population, col = country))+
geom_line()+
geom_line(data = model_df[model_df$country %in% c("United States", "United Kingdom", "Germany", "European Union (average)", "France", "Italy", "Canada", "Spain") & model_df$date >= Sys.Date(), ], aes(linetype = "projected"), linetype = 2)+
theme_minimal()+
theme(legend.title = element_blank())+xlab("Sources: Our World in Data, The Economist\n *explanation on dotted line = 'Projected by The Economist based on model including country's cumulative doses administered to date'\nLabel: 'Given current trends, The EU will overtake America in vaccinations administered per person on July 14th" )+ylab("")+ggtitle("Unflatten the curve\nTotal covid-19 vaccinations administered, per person, December 2020 to July 2021")
ggsave("Unflatten.png", width = 8, height = 5)
# Plot 2:
library(readr)
pdat <- read_csv("plot_2_3.csv")
pdat$country[pdat$country == "European Union (average)"] <- "European Union"
ggplot(pdat,
aes(x=date, y=daily_vaccinations_per_100k/1000, col = country))+
geom_line()+
theme_minimal()+theme(legend.title = element_blank())+
ylab("")+xlab("")+ggtitle("Jab sessions\nPopulation vaccinated per day, %, 7-day average")+xlab("Source: Our World in Data")
ggsave("jab_sessions.png", width = 8, height = 5)
# Plot 3:
library(readr)
pdat <- read_csv("plot_2_3.csv")
ggplot(pdat[pdat$country %in% c("United Kingdom", "United States", "European Union (average)"), ],
aes(x=date))+
geom_area(aes(y=vaccinated_pct, fill = "First dose"))+
geom_area(aes(y=fully_vaccinated_pct, fill = "Fully vaccinated"))+
theme_minimal()+theme(legend.title = element_blank())+
theme(legend.position = "right")+
ylab("")+xlab("")+ggtitle("Giant steps\nVaccination rates, %")+facet_grid(.~country)+xlab("Source: Our World in Data")
ggsave("giant_steps.png", width = 8, height = 3)