-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathfinalPrototype.py
147 lines (122 loc) · 5.09 KB
/
finalPrototype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from darkflow.net.build import TFNet
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import cv2
import imutils
options = {"pbLoad": "yolo-plate.pb", "metaLoad": "yolo-plate.meta", "gpu": 0.9}
yoloPlate = TFNet(options)
options = {"pbLoad": "yolo-character.pb", "metaLoad": "yolo-character.meta", "gpu":0.9}
yoloCharacter = TFNet(options)
characterRecognition = tf.keras.models.load_model('character_recognition.h5')
def firstCrop(img, predictions):
predictions.sort(key=lambda x: x.get('confidence'))
xtop = predictions[-1].get('topleft').get('x')
ytop = predictions[-1].get('topleft').get('y')
xbottom = predictions[-1].get('bottomright').get('x')
ybottom = predictions[-1].get('bottomright').get('y')
firstCrop = img[ytop:ybottom, xtop:xbottom]
cv2.rectangle(img,(xtop,ytop),(xbottom,ybottom),(0,255,0),3)
return firstCrop
def secondCrop(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,0)
contours,_ = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
if(len(areas)!=0):
max_index = np.argmax(areas)
cnt=contours[max_index]
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
secondCrop = img[y:y+h,x:x+w]
else:
secondCrop = img
return secondCrop
def auto_canny(image, sigma=0.33):
# compute the median of the single channel pixel intensities
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edged = cv2.Canny(image, lower, upper)
# return the edged image
return edged
def opencvReadPlate(img):
charList=[]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
thresh_inv = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV,39,1)
edges = auto_canny(thresh_inv)
ctrs, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
img_area = img.shape[0]*img.shape[1]
for i, ctr in enumerate(sorted_ctrs):
x, y, w, h = cv2.boundingRect(ctr)
roi_area = w*h
non_max_sup = roi_area/img_area
if((non_max_sup >= 0.015) and (non_max_sup < 0.09)):
if ((h>1.2*w) and (3*w>=h)):
char = img[y:y+h,x:x+w]
charList.append(cnnCharRecognition(char))
cv2.rectangle(img,(x,y),( x + w, y + h ),(90,0,255),2)
cv2.imshow('OpenCV character segmentation',img)
licensePlate="".join(charList)
return licensePlate
def cnnCharRecognition(img):
dictionary = {0:'0', 1:'1', 2 :'2', 3:'3', 4:'4', 5:'5', 6:'6', 7:'7', 8:'8', 9:'9', 10:'A',
11:'B', 12:'C', 13:'D', 14:'E', 15:'F', 16:'G', 17:'H', 18:'I', 19:'J', 20:'K',
21:'L', 22:'M', 23:'N', 24:'P', 25:'Q', 26:'R', 27:'S', 28:'T', 29:'U',
30:'V', 31:'W', 32:'X', 33:'Y', 34:'Z'}
blackAndWhiteChar=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blackAndWhiteChar = cv2.resize(blackAndWhiteChar,(75,100))
image = blackAndWhiteChar.reshape((1, 100,75, 1))
image = image / 255.0
new_predictions = characterRecognition.predict(image)
char = np.argmax(new_predictions)
return dictionary[char]
def yoloCharDetection(predictions,img):
charList = []
positions = []
for i in predictions:
if i.get("confidence")>0.10:
xtop = i.get('topleft').get('x')
positions.append(xtop)
ytop = i.get('topleft').get('y')
xbottom = i.get('bottomright').get('x')
ybottom = i.get('bottomright').get('y')
char = img[ytop:ybottom, xtop:xbottom]
cv2.rectangle(img,(xtop,ytop),( xbottom, ybottom ),(255,0,0),2)
charList.append(cnnCharRecognition(char))
cv2.imshow('Yolo character segmentation',img)
sortedList = [x for _,x in sorted(zip(positions,charList))]
licensePlate="".join(sortedList)
return licensePlate
cap = cv2.VideoCapture('vid1.MOV')
counter=0
while(cap.isOpened()):
ret, frame = cap.read()
h, w, l = frame.shape
frame = imutils.rotate(frame, 270)
if counter%6 == 0:
licensePlate = []
try:
predictions = yoloPlate.return_predict(frame)
firstCropImg = firstCrop(frame, predictions)
secondCropImg = secondCrop(firstCropImg)
cv2.imshow('Second crop plate',secondCropImg)
secondCropImgCopy = secondCropImg.copy()
licensePlate.append(opencvReadPlate(secondCropImg))
print("OpenCV+CNN : " + licensePlate[0])
except:
pass
try:
predictions = yoloCharacter.return_predict(secondCropImg)
licensePlate.append(yoloCharDetection(predictions,secondCropImgCopy))
print("Yolo+CNN : " + licensePlate[1])
except:
pass
counter+=1
cv2.imshow('Video',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()