-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_generator.py
207 lines (173 loc) · 7.87 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
from colmap.scripts.python.read_write_model import read_model, qvec2rotmat
from imageio import imread
import argparse
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use("Agg")
from time import time
import random
random.seed(0)
from tqdm import tqdm
import math
import copy
def get_image(idx):
im = imread(src + '/dense/images/' + images[idx].name)
q = images[idx].qvec
R = qvec2rotmat(q)
T = images[idx].tvec
p = images[idx].xys
pars = cameras[idx].params
K = np.array([[pars[0], 0, pars[2]], [0, pars[1], pars[3]], [0, 0, 1]])
pids = images[idx].point3D_ids
return {
'image': im,
'K': K,
'q': q,
'R': R,
'T': T,
'xys': p,
'ids': pids}
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--root', dest='root', help='source dataset directory',
default='Image_Matching_Challange_Data',
type=str)
parser.add_argument('--out_dir', dest='out_dir', help='output dataset directory',
default='picture',
type=str)
parser.add_argument('--pt_num', dest='num_p',
help='universal point number to be selected',
default=50, type=int)
parser.add_argument('--min_exist_num', dest='min_existence_num',
help='min num of img an anchor exists in',
default=10, type=int)
parser.add_argument('--dis_rate', dest='min_init_p_dis_th',
help='min distance rate when selecting points',
default=1.0, type=float)
parser.add_argument('--exist_dis_rate', dest='min_img_p_dis_th',
help='min distance rate when judging anchors\' existence',
default=0.75, type=float)
args = parser.parse_args()
seqs = ['brandenburg_gate', 'buckingham_palace', 'colosseum_exterior',
'grand_place_brussels', 'hagia_sophia_interior', 'notre_dame_front_facade',
'palace_of_westminster', 'pantheon_exterior', 'prague_old_town_square',
'reichstag', 'sacre_coeur', 'st_peters_square', 'taj_mahal',
'temple_nara_japan', 'trevi_fountain', 'westminster_abbey']
for seq in seqs:
src = args.root + '/' + seq
zeropoints = []
cameras, images, points = read_model(path=src + '/dense/sparse', ext='.bin')
indices = [i for i in cameras]
point_index = list(points.keys())
point_index = np.array(point_index)
point_fre = dict.fromkeys(point_index, 0)
for index in indices:
data = get_image(index)
setp = set(images[index].point3D_ids)
setp.discard(-1)
for k in setp:
point_fre[k] += 1
point_freq = copy.deepcopy(point_fre)
for key in point_fre:
if point_fre[key] < args.min_existence_num:
point_freq.pop(key)
xyzp = []
for key in point_freq:
xyzp.append(np.concatenate((points[key].xyz, [key,])))
xyzp = np.array(xyzp)
cur = []
subset = []
for p in data['ids']:
if p >= 0:
cur.append(np.concatenate((points[p].xyz,np.array([p,]))))
subset.append(p)
cur = np.array(cur) # shape-(num_of_points, 4) # 4:x,y,z,id
l = len(point_freq)
kps = [random.randint(0, l-1),]
min_distance = np.sqrt(math.pow(np.max(xyzp[:,0]) - np.min(xyzp[:,0]), 2) +
math.pow(np.max(xyzp[:,1]) - np.min(xyzp[:,1]), 2) +
math.pow(np.max(xyzp[:,2]) - np.min(xyzp[:,2]), 2)) / args.num_p * args.min_init_p_dis_th
flag = 0
dis = 0
while len(kps) < args.num_p:
flag = 0
i = random.randint(0, l-1)
for j in kps:
dis = math.pow(xyzp[i, 0] - xyzp[j, 0], 2) + \
math.pow(xyzp[i, 1] - xyzp[j, 1], 2) + \
math.pow(xyzp[i, 2] - xyzp[j, 2], 2)
if dis < min_distance**2:
flag = 1
break
if flag == 0:
kps.append(i)
out_img_name = []
total_num_points = []
print('processing {}'.format(seq))
for index in tqdm(indices):
data = get_image(index)
K = data['K']
R = data['R']
T = data['T']
setp = set(images[index].point3D_ids)
setp.discard(-1)
kpoints = []
for p in kps:
for img_p in setp:
dis = math.pow(xyzp[p, 0] - points[img_p].xyz[0], 2) + \
math.pow(xyzp[p, 1] - points[img_p].xyz[1], 2) + \
math.pow(xyzp[p, 2] - points[img_p].xyz[2], 2)
if dis < (min_distance * args.min_img_p_dis_th)**2:
kpoints.append(xyzp[p, :])
break
kpoints = np.array(kpoints)
if kpoints.shape[0] == 0:
zeropoints.append('{}-{}'.format(seq, images[index].name))
output = []
continue
p_proj = np.dot(K, np.dot(R, kpoints[:, :3].T) + T[..., None])
p_proj = p_proj / p_proj[2, :]
check = []
row, col, _ = data['image'].shape
lenth = p_proj.shape[1]
checkx = np.ones(lenth)
checkx[p_proj[0] < 0] = 0
checkx[p_proj[0] > col] = 0
checky = np.ones(lenth)
checky[p_proj[1] < 0] = 0
checky[p_proj[1] > row] = 0
checking = np.multiply(checkx,checky)
for i in range(lenth):
if checking[i] == 1:
check.append(p_proj[:, i])
p_proj_in_img = (np.array(check)).T # shape(3,x) # x <= 50
fig = plt.figure(frameon=False) # figsize=(12, 12)
f = plt.imshow(data['image'])
plt.axis('off')
output = []
if p_proj_in_img.shape[0] != 0:
plt.plot(p_proj_in_img[0, :], p_proj_in_img[1, :], 'r.', markersize=3)
else:
zeropoints.append('{}-{}'.format(seq, images[index].name))
for j in range(kpoints.shape[0]):
if checking[j] == 1:
kp_id = int(np.where(kps == np.where(xyzp[:,3] == int(kpoints[j, 3]))[0])[0])
plt.text(p_proj[0, j], p_proj[1, j], '{}'.format(kp_id),
horizontalalignment='center', verticalalignment='center',
size=8, color = 'orange')
output.append(np.array([kp_id, p_proj[0, j], p_proj[1, j]]))
output = list(map(list, zip(*output)))
if p_proj_in_img.shape[0] != 0:
np.savez('{}/{}/{}.npz'.format(args.out_dir, seq, images[index].name), points = output)
plt.savefig('{}/{}/{}'.format(args.out_dir, seq, images[index].name),
bbox_inches='tight', pad_inches=0)
plt.close()
if p_proj_in_img.shape[0] != 0:
out_img_name.append(images[index].name)
total_num_points.append(p_proj_in_img.shape[1])
total_num_points = np.array(total_num_points)
info = {'max': np.max(total_num_points), 'min': np.min(total_num_points),
'average': np.average(total_num_points), 'var': np.var(total_num_points)}
np.savez('{}/{}/img_info.npz'.format(args.out_dir, seq), img_name = out_img_name, points_info = info)
np.savez('{}/{}/zero_point_img.npz'.format(args.out_dir, seq), img_name = zeropoints)