-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfacility_location_experiment.py
303 lines (273 loc) · 16.3 KB
/
facility_location_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from src.facility_location_methods import *
import time
import xlwt
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from datetime import datetime
import os
from src.facility_location_data import get_random_data, get_starbucks_data
from src.config import load_config
####################################
# config #
####################################
cfg = load_config()
device = torch.device('cuda:0')
for k, v in cfg.items():
print(f'{k}: {v}')
####################################
# training #
####################################
if cfg.train_data_type == 'random':
cfg_dict = {}
if 'with_demand' in cfg:
cfg_dict['demand'] = cfg.with_demand
if 'max_demand' in cfg:
cfg_dict['max_demand'] = cfg.max_demand
train_dataset = get_random_data(cfg.num_data, cfg.dim, 0, device, **cfg_dict)
elif cfg.train_data_type == 'starbucks':
train_dataset = get_starbucks_data(device)
else:
raise ValueError(f'Unknown dataset name {cfg.train_dataset_type}!')
model = GNNModel().to(device)
for method_name in cfg.methods:
model_path = f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_{method_name}.pt'
if not os.path.exists(model_path) and method_name in ['cardnn-gs', 'cardnn-s', 'linsatnet', 'egn']:
print(f'Training the model weights for {method_name}...')
model = GNNModel().to(device)
if method_name in ['cardnn-gs', 'cardnn-s']:
train_optimizer = torch.optim.Adam(model.parameters(), lr=cfg.train_lr)
for epoch in range(cfg.train_iter):
# training loop
obj_sum = 0
for index, (_, points, __) in enumerate(train_dataset):
graph, dist = build_graph_from_points(points, None, True, cfg.distance_metric)
latent_vars = model(graph)
if method_name == 'cardnn-gs':
sample_num = cfg.train_gumbel_sample_num
noise_fact = cfg.gumbel_sigma
else:
sample_num = 1
noise_fact = 0
top_k_indices, probs = gumbel_sinkhorn_topk(
latent_vars, cfg.train_num_facilities, max_iter=100, tau=.05,
sample_num=sample_num, noise_fact=noise_fact, return_prob=True
)
# compute objective by softmax
obj = compute_objective_differentiable(dist, probs, temp=50) # set smaller temp during training
obj.mean().backward()
obj_sum += obj.mean()
train_optimizer.step()
train_optimizer.zero_grad()
print(f'epoch {epoch}/{cfg.train_iter}, obj={obj_sum / len(train_dataset)}')
if method_name in ['linsatnet']:
train_optimizer = torch.optim.Adam(model.parameters(), lr=cfg.train_lr)
for epoch in range(cfg.train_iter):
# training loop
obj_sum = 0
for index, (_, points, demands) in enumerate(train_dataset):
graph, dist = build_graph_from_points(points, None, True, cfg.distance_metric)
latent_vars = model(graph)
A = torch.ones(1, len(points), device=latent_vars.device)
b = torch.tensor([cfg.train_num_facilities], dtype=A.dtype, device=latent_vars.device)
if demands is None:
C = d = None
else:
C = torch.ones(1, len(points), device=latent_vars.device)
d = torch.tensor([torch.sum(demands)], dtype=C.dtype, device=latent_vars.device)
probs = gumbel_linsat_layer(torch.sigmoid(latent_vars), A=A, b=b, C=C, d=d,
max_iter=cfg.linsat_sk_iter, tau=cfg.linsat_tau,
sample_num=cfg.train_gumbel_sample_num, noise_fact=cfg.linsat_sigma)
# compute objective by softmax
obj = compute_objective_differentiable(dist, probs, demands, temp=cfg.linsat_softmax_temp)
obj.mean().backward()
obj_sum += obj.mean()
train_optimizer.step()
train_optimizer.zero_grad()
print(f'epoch {epoch}/{cfg.train_iter}, obj={obj_sum / len(train_dataset)}')
if method_name in ['egn']:
train_optimizer = torch.optim.Adam(model.parameters(), lr=cfg.train_lr_egn)
# training loop
for epoch in range(cfg.train_iter_egn):
obj_sum = 0
for index, (_, points, demands) in enumerate(train_dataset):
graph, dist = build_graph_from_points(points, None, True, cfg.distance_metric)
probs = model(graph)
cardinality_cv = torch.relu(probs.sum() - cfg.train_num_facilities)
if demands is None:
total_cv = cardinality_cv
else:
total_cv = cardinality_cv + torch.relu(torch.sum(demands) - probs.sum())
obj = compute_objective_differentiable(dist, probs, demands, temp=50) + cfg.egn_beta * total_cv
obj.mean().backward()
obj_sum += obj.mean()
train_optimizer.step()
train_optimizer.zero_grad()
print(f'epoch {epoch}/{cfg.train_iter_egn}, obj={obj_sum / len(train_dataset)}')
torch.save(model.state_dict(), model_path)
print(f'Model saved to {model_path}.')
####################################
# testing #
####################################
wb = xlwt.Workbook()
ws = wb.add_sheet(f'flp_{cfg.test_data_type}_{cfg.test_num_facilities}-{cfg.num_data}')
ws.write(0, 0, 'name')
timestamp = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
if cfg.test_data_type == 'random':
cfg_dict = {}
if 'with_demand' in cfg:
cfg_dict['demand'] = cfg.with_demand
if 'max_demand' in cfg:
cfg_dict['max_demand'] = cfg.max_demand
dataset = get_random_data(cfg.num_data, cfg.dim, 1, device, **cfg_dict)
elif cfg.test_data_type == 'starbucks':
dataset = get_starbucks_data(device)
else:
raise ValueError(f'Unknown dataset name {cfg.train_dataset_type}!')
for index, (prob_name, points, demands) in enumerate(dataset):
fig = plt.figure(figsize=(10, 10))
plt.plot(points[:, 0].cpu(), points[:, 1].cpu(), 'b.')
method_idx = 0
print('-' * 20)
print(f'{prob_name} points={len(points)} select={cfg.test_num_facilities}')
ws.write(index + 1, 0, prob_name)
if 'greedy' in cfg.methods:
method_idx += 1
prev_time = time.time()
selected_points, selected_indices = greedy_facility_location(points, cfg.test_num_facilities, demands,
distance=cfg.distance_metric, device=points.device)
objective = compute_objective(points, selected_points, cfg.distance_metric, demands).item()
print(f'{prob_name} greedy objective={objective:.4f} '
f'selected={sorted(selected_indices.cpu().numpy().tolist())} '
f'time={time.time() - prev_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'greedy-objective')
ws.write(0, method_idx * 2, 'greedy-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, time.time() - prev_time)
if 'gurobi' in cfg.methods:
# Gurobi - integer programming
method_idx += 1
prev_time = time.time()
ip_obj, ip_scores = gurobi_facility_location(
points, cfg.test_num_facilities, demands, distance=cfg.distance_metric, linear_relaxation=False,
timeout_sec=cfg.solver_timeout, verbose=cfg.verbose)
ip_scores = torch.tensor(ip_scores)
top_k_indices = torch.nonzero(ip_scores, as_tuple=False).view(-1)
print(f'{prob_name} Gurobi objective={ip_obj:.4f} '
f'selected={sorted(top_k_indices.cpu().numpy().tolist())} '
f'time={time.time() - prev_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'Gurobi-objective')
ws.write(0, method_idx * 2, 'Gurobi-time')
ws.write(index + 1, method_idx * 2 - 1, ip_obj)
ws.write(index + 1, method_idx * 2, time.time() - prev_time)
if 'scip' in cfg.methods:
# SCIP - integer programming
method_idx += 1
prev_time = time.time()
ip_obj, ip_scores = ortools_facility_location(
points, cfg.test_num_facilities, distance=cfg.distance_metric, linear_relaxation=False,
timeout_sec=cfg.solver_timeout, solver_name='SCIP')
ip_scores = torch.tensor(ip_scores)
top_k_indices = torch.nonzero(ip_scores, as_tuple=False).view(-1)
print(f'{prob_name} SCIP objective={ip_obj:.4f} '
f'selected={sorted(top_k_indices.cpu().numpy().tolist())} '
f'time={time.time() - prev_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'SCIP-objective')
ws.write(0, method_idx * 2, 'SCIP-time')
ws.write(index + 1, method_idx * 2 - 1, ip_obj)
ws.write(index + 1, method_idx * 2, time.time() - prev_time)
if 'egn' in cfg.methods:
# Erdos Goes Neural
method_idx += 1
model.load_state_dict(torch.load(f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_egn.pt'))
objective, selected_indices, finish_time = egn_facility_location(
points, cfg.test_num_facilities, model, cfg.softmax_temp, cfg.egn_beta,
time_limit=-1, distance_metric=cfg.distance_metric)
print(f'{prob_name} EGN objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'EGN-objective')
ws.write(0, method_idx * 2, 'EGN-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
method_idx += 1
objective, selected_indices, finish_time = egn_facility_location(
points, cfg.test_num_facilities, model, cfg.softmax_temp, cfg.egn_beta, cfg.egn_trials,
time_limit=-1, distance_metric=cfg.distance_metric)
print(f'{prob_name} EGN-accu objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'EGN-accu-objective')
ws.write(0, method_idx * 2, 'EGN-accu-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
if 'cardnn-s' in cfg.methods:
# CardNN-S
method_idx += 1
model.load_state_dict(torch.load(f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_cardnn-s.pt'))
objective, selected_indices, finish_time = cardnn_facility_location(points, cfg.test_num_facilities, model,
cfg.softmax_temp, 1, 0, cfg.sinkhorn_tau,
cfg.sinkhorn_iter, cfg.soft_opt_iter,
time_limit=-1,
distance_metric=cfg.distance_metric,
verbose=cfg.verbose)
print(f'{prob_name} CardNN-S objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'CardNN-S-objective')
ws.write(0, method_idx * 2, 'CardNN-S-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
if 'cardnn-gs' in cfg.methods:
# CardNN-GS
method_idx += 1
model.load_state_dict(torch.load(f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_cardnn-gs.pt'))
objective, selected_indices, finish_time = cardnn_facility_location(points, cfg.test_num_facilities, model,
cfg.softmax_temp, cfg.gumbel_sample_num,
cfg.gumbel_sigma, cfg.sinkhorn_tau,
cfg.sinkhorn_iter, cfg.gs_opt_iter,
time_limit=-1,
distance_metric=cfg.distance_metric,
verbose=cfg.verbose)
print(f'{prob_name} CardNN-GS objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'CardNN-GS-objective')
ws.write(0, method_idx * 2, 'CardNN-GS-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
if 'cardnn-hgs' in cfg.methods:
# CardNN-HGS
method_idx += 1
model.load_state_dict(torch.load(f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_cardnn-gs.pt'))
objective, selected_indices, finish_time = cardnn_facility_location(points, cfg.test_num_facilities, model,
cfg.softmax_temp, cfg.gumbel_sample_num,
cfg.homotophy_sigma, cfg.homotophy_tau,
cfg.homotophy_sk_iter,
cfg.homotophy_opt_iter, time_limit=-1,
distance_metric=cfg.distance_metric,
verbose=cfg.verbose)
print(f'{prob_name} CardNN-HGS objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'CardNN-HGS-objective')
ws.write(0, method_idx * 2, 'CardNN-HGS-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
if 'linsatnet' in cfg.methods:
# LinSATNet
method_idx += 1
model.load_state_dict(torch.load(f'facility_location_{cfg.train_data_type}_{cfg.train_num_facilities}-{cfg.num_data}_linsatnet.pt'))
objective, selected_indices, finish_time = linsat_facility_location(points, cfg.test_num_facilities, demands, model,
cfg.linsat_softmax_temp, cfg.gumbel_sample_num,
cfg.linsat_sigma, cfg.linsat_tau,
cfg.linsat_sk_iter,
cfg.linsat_opt_iter, time_limit=-1,
distance_metric=cfg.distance_metric,
verbose=cfg.verbose)
print(f'{prob_name} LinSATNet objective={objective:.4f} selected={sorted(selected_indices.cpu().numpy().tolist())} time={finish_time}')
if index == 0:
ws.write(0, method_idx * 2 - 1, 'LinSATNet-objective')
ws.write(0, method_idx * 2, 'LinSATNet-time')
ws.write(index + 1, method_idx * 2 - 1, objective)
ws.write(index + 1, method_idx * 2, finish_time)
wb.save(f'facility_location_result_{cfg.test_data_type}_{cfg.test_num_facilities}-{cfg.num_data}_{timestamp}.xls')
plt.close()