Skip to content

Latest commit

 

History

History

grammarviz3_multi

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

MultiGrammarViz

Citekey -
Source Code own
Learning type unsupervised
Input dimensionality multivariate

Notes

This is a modified version of the grammarviz algorithm. Modifications include the possibility to classify multivariate time series, and general quality-of-life additions. Furthermore, parameters for additional configuration of output algorithms were added, and the need for post-processing was removed. The most important parameters are output_mode and multi_strategy. output_mode specifies the algorithm which will generate the anomaly scores and multi_strategy specifies which adaption to the multivariate case should be used. This only applies for time series with more than one dimension. The univariate implementation uses output_mode of 2.

Output mode value algorithm
0 rule density
1 discord discovery (RRA)
2 modified brute-force HOTSAX
Multivariate strategy value algorithm
0 merge all dimensions
1 merge correlated dimensions
2 merge no dimensions

Citation format

Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P. Boedihardjo, Crystal Chen, and Susan Frankenstein. 2018. GrammarViz 3.0: Interactive Discovery of Variable-Length Time Series Patterns. ACM Trans. Knowl. Discov. Data 12, 1, Article 10 (February 2018), 28 pages. DOI: https://doi.org/10.1145/3051126

Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S., Lerner, M., Time series anomaly discovery with grammar-based compression, The International Conference on Extending Database Technology, EDBT 15.