-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecognize.py
executable file
·77 lines (59 loc) · 2.99 KB
/
recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
from argparse import ArgumentParser
import cv2
import numpy
from capture.capture import VideoCapture
from face_detector import FaceDetection
from face_embedding import FaceEmbedding
from util import cosine_similarity, draw_square, show_image
RED = (255, 0, 0)
GREEN = (0, 255, 0)
def main():
args = ArgumentParser()
args.add_argument('-c', '--camera_url', default=0, type=str, help='0 - local camera')
args.add_argument('-dt', '--detect_threshold', default=0.975, type=float, help="Threshold of face detection")
args.add_argument('-rf', '--recognized_threshold', default=0.8, type=float, help="Threshold of face recognition")
args.add_argument('--device', default='cuda:0', type=str, help="Device run model. `cuda:<id>` or `cpu`")
args.add_argument('--detect_face_model', default='data/pretrained/mobilenet_header.pth',
type=str, help="Face detector model path")
args.add_argument('--detect_face_backbone', default='data/pretrained/mobile_backbone.tar',
type=str, help="Face detector backbone path")
args.add_argument('--recognized_model', default='data/pretrained/embedder_resnet50_asia.pth'
, type=str, help="Face embedding model path")
args.add_argument('--model_registered', default='model_faces.npy', type=str, help="Model contain face's vectors")
args.add_argument('--model_ids', default='model_face_ids.npy', type=str, help="Model contain face's ids")
args = args.parse_args()
try:
args.camera_url = int(args.camera_url)
except:
pass
if not (os.path.isfile(args.model_registered) and os.path.isfile(args.model_ids)):
face_model = numpy.zeros((0, 512), dtype=numpy.float32)
ids_model = []
else:
face_model = numpy.load(args.model_registered, allow_pickle=True)
ids_model = numpy.load(args.model_ids, allow_pickle=True).tolist()
detector = FaceDetection(args.detect_face_model, args.detect_face_backbone, scale_size=480, device=args.device)
embedder = FaceEmbedding(args.recognized_model, device=args.device)
# recognize
video = VideoCapture(args.camera_url)
for frame in video:
faces = detector(frame)
faces = embedder(faces)
for face in faces:
txt = "None"
color = RED
scores = cosine_similarity(face.embedding.reshape(1, 512), face_model, skip_normalize=True).ravel()
args_idx = numpy.argmax(scores)
if scores[args_idx] >= args.recognized_threshold:
txt = ids_model[args_idx]
color = GREEN
frame = draw_square(frame, face.box.astype(numpy.int), color=color)
frame = cv2.putText(frame, f"EID: {txt}",
(int(face.box[0]), int(face.box[1] - 20)), cv2.FONT_HERSHEY_PLAIN, 1,
GREEN)
if not show_image(frame, 'Face Recognition', windows_size=(1920, 1080)):
break
video.stop()
if __name__ == '__main__':
main()