forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_simple.py
322 lines (292 loc) · 11.5 KB
/
inference_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import time
import timm
import glob
import numpy as np
import os.path as osp
import cv2
import torch
import torch.distributed as dist
from torch import nn
from pathlib import Path
from backbones import get_network
from skimage import transform as sktrans
from scipy.spatial.transform import Rotation
def batch_euler2matrix(batch_euler):
n = batch_euler.shape[0]
assert batch_euler.shape[1] == 3
batch_matrix = np.zeros([n, 3, 3], dtype=np.float32)
for i in range(n):
pitch, yaw, roll = batch_euler[i]
R = Rotation.from_euler('yxz', [yaw, pitch, roll], degrees=False).as_matrix().T
batch_matrix[i] = R
return batch_matrix
def euler2matrix(euler):
assert len(euler)==3
matrix = np.zeros([3, 3], dtype=np.float32)
pitch, yaw, roll = euler
R = Rotation.from_euler('yxz', [yaw, pitch, roll], degrees=False).as_matrix().T
matrix = R
return matrix
def Rt_from_6dof(pred_6dof):
assert pred_6dof.ndim==1 or pred_6dof.ndim==2
if pred_6dof.ndim==1:
R_pred = euler2matrix(pred_6dof[:3])
t_pred = pred_6dof[-3:]
return R_pred, t_pred
else:
R_pred = batch_euler2matrix(pred_6dof[:,:3])
t_pred = pred_6dof[:,-3:].reshape(-1,1,3)
return R_pred, t_pred
def solver_rigid(pts_3d , pts_2d , camera_matrix):
# pts_3d Nx3
# pts_2d Nx2
# camera_matrix 4x4
dist_coeffs = np.zeros((4,1))
pts_3d = pts_3d.copy()
pts_2d = pts_2d.copy()
#print(pts_3d.shape, pts_3d.dtype, pts_2d.shape, pts_2d.dtype)
success, rotation_vector, translation_vector = cv2.solvePnP(pts_3d, pts_2d, camera_matrix, dist_coeffs, flags=0)
assert success
R, _ = cv2.Rodrigues(rotation_vector)
R = R.T
R[:,1:3] *= -1
T = translation_vector.flatten()
T[1:] *= -1
return R,T
class JMLRInference(nn.Module):
def __init__(self, cfg, local_rank=0):
super(JMLRInference, self).__init__()
backbone = get_network(cfg)
if cfg.ckpt is None:
ckpts = list(glob.glob(osp.join(cfg.output, "backbone*.pth")))
backbone_pth = sorted(ckpts)[-1]
else:
backbone_pth = cfg.ckpt
if local_rank==0:
print(backbone_pth)
backbone_ckpt = torch.load(backbone_pth, map_location=torch.device(local_rank))
if 'model' in backbone_ckpt:
backbone_ckpt = backbone_ckpt['model']
backbone.load_state_dict(backbone_ckpt)
backbone.eval()
backbone.requires_grad_(False)
self.backbone = backbone
self.num_verts = cfg.num_verts
self.input_size = cfg.input_size
self.flipindex = cfg.flipindex.copy()
self.data_root = Path(cfg.root_dir)
txt_path = self.data_root / 'resources/projection_matrix.txt'
self.M_proj = np.loadtxt(txt_path, dtype=np.float32)
M1 = np.array([
[400.0, 0, 0, 0],
[ 0, 400.0, 0, 0],
[ 0, 0, 1, 0],
[400.0, 400.0, 0, 1]
])
self.M1 = M1
camera_matrix = self.M_proj @ M1
camera_matrix = camera_matrix[:3,:3].T
camera_matrix[0,2] = 400
camera_matrix[1,2] = 400
self.camera_matrix = camera_matrix.copy()
self.use_eyes = False
if cfg.eyes is not None:
self.use_eyes = True
from eye_dataset import EyeDataset
eye_dataset = EyeDataset(cfg.eyes['root'], load_data=False)
self.iris_idx_481 = eye_dataset.iris_idx_481
def project_shape_in_image(self, verts, R_t):
verts_homo = verts
if verts_homo.shape[1] == 3:
ones = np.ones([verts_homo.shape[0], 1])
verts_homo = np.concatenate([verts_homo, ones], axis=1)
verts_out = verts_homo @ R_t @ self.M_proj @ self.M1
w_ = verts_out[:, [3]]
verts_out = verts_out / w_
return verts_out
def set_raw_image_size(self, width, height):
w = width / 2.0
h = height / 2.0
M1 = np.array([
[w, 0, 0, 0],
[ 0, h, 0, 0],
[ 0, 0, 1, 0],
[w, h, 0, 1]
])
camera_matrix = self.M_proj @ M1
camera_matrix = camera_matrix[:3,:3].T
camera_matrix[0,2] = w
camera_matrix[1,2] = h
self.camera_matrix = camera_matrix
self.raw_width = width
self.raw_height = height
def forward(self, img_local, is_flip=False):
if is_flip:
img_local = img_local.flip([3])
pred = self.backbone(img_local)
pred1 = pred[:,:1220*3]
pred2 = pred[:,1220*3:1220*5]
meta = {'flip': is_flip}
if not self.use_eyes:
return pred1, pred2, meta
else:
eye_verts = pred[:,1220*5:1220*5+481*2*3]
eye_points = pred[:,1220*5+481*2*3:]
return pred1, pred2, meta, eye_verts, eye_points
def convert_verts(self, pred1, meta):
is_flip = meta['flip']
pred1 = pred1.cpu().numpy()
pred1 = pred1[:,:1220*3]
pred_verts = pred1.reshape(-1,1220,3) / 10.0
if is_flip:
pred_verts = pred_verts[:,self.flipindex,:]
pred_verts[:,:,0] *= -1.0
return pred_verts
def convert_2d(self, pred2, tforms, meta):
is_flip = meta['flip']
tforms = tforms.cpu().numpy()
pred2 = pred2.cpu().numpy()
B = pred2.shape[0]
points2d = (pred2.reshape(B,-1,2)+1.0) * self.input_size//2
if is_flip:
points2d = points2d[:,self.flipindex,:]
points2d[:,:,0] = self.input_size - 1 - points2d[:,:,0]
#B = points2d.shape[0]
points2de = np.ones( (points2d.shape[0], points2d.shape[1], 3), dtype=points2d.dtype)
points2de[:,:,:2] = points2d
verts2d = np.zeros((B,points2d.shape[1],2), dtype=np.float32)
for n in range(B):
tform = tforms[n]
tform_inv = cv2.invertAffineTransform(tform)
_points2d = np.dot(tform_inv, points2de[n].T).T
verts2d[n] = _points2d
#return verts2d, points2d
return verts2d
def convert_eyes(self, eye_verts3d, eye_verts2d, R_t, tforms):
meta = {'flip': False}
eye_verts3d = eye_verts3d.cpu().numpy().reshape(-1, 481*2, 3)[0]
eye_verts2d = self.convert_2d(eye_verts2d, tforms, meta)[0]
el_inv = eye_verts3d[:481,:]
er_inv = eye_verts3d[481:,:]
v_el = eye_verts2d[:481,:]
v_er = eye_verts2d[481:,:]
vector_norm = 0.035
# gaze vector of left eye in world space
gl_vector = el_inv[self.iris_idx_481].mean(axis=0) - el_inv[-1]
gl_vector = (gl_vector / np.linalg.norm(gl_vector)) * vector_norm
gl_point = el_inv[self.iris_idx_481].mean(axis=0) + gl_vector
# gaze vector of right eye in world space
gr_vector = er_inv[self.iris_idx_481].mean(axis=0) - er_inv[-1]
gr_vector = (gr_vector / np.linalg.norm(gr_vector)) * vector_norm
gr_point = er_inv[self.iris_idx_481].mean(axis=0) + gr_vector
g_el = self.project_shape_in_image(gl_point[None, :], R_t)
g_er = self.project_shape_in_image(gr_point[None, :], R_t)
g_el = g_el[:, :3].copy()
g_el[:, 1] = self.raw_height - g_el[:, 1]
g_er = g_er[:, :3].copy()
g_er[:, 1] = self.raw_height - g_er[:, 1]
pt1_l = v_el[self.iris_idx_481][:, [0, 1]].mean(axis=0).astype(np.int32)
pt2_l = g_el[0, [0, 1]].astype(np.int32)
pt1_r = v_er[self.iris_idx_481][:, [0, 1]].mean(axis=0).astype(np.int32)
pt2_r = g_er[0, [0, 1]].astype(np.int32)
return eye_verts3d, eye_verts2d, (pt1_l, pt2_l), (pt1_r, pt2_r)
def solve(self, verts3d, verts2d):
print(verts3d.shape, verts2d.shape)
B = verts3d.shape[0]
R = np.zeros([B, 3, 3], dtype=np.float32)
t = np.zeros([B, 1, 3], dtype=np.float32)
for n in range(B):
_R, _t = solver_rigid(verts3d[n], verts2d[n], self.camera_matrix)
R[n] = _R
t[n,0] = _t
return R, t
def solve_one(self, verts3d, verts2d):
R, t = solver_rigid(verts3d, verts2d, self.camera_matrix)
return R, t
def get(net, img, keypoints):
dst_pts = np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041] ], dtype=np.float32 )
input_size = 256
local_rank = 0
new_size = 144
dst_pts[:,0] += ((new_size-112)//2)
dst_pts[:,1] += 8
dst_pts[:,:] *= (input_size/float(new_size))
tf = sktrans.SimilarityTransform()
tf.estimate(keypoints, dst_pts)
tform = tf.params[0:2,:]
img = cv2.warpAffine(img, tform, (input_size,)*2)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float()
img.div_(255).sub_(0.5).div_(0.5)
img_local = img.to(local_rank)
with torch.no_grad():
if not net.use_eyes:
pred1, pred2, meta = net(img_local, is_flip=False)
else:
pred1, pred2, meta, eye_verts, eye_points = net(img_local, is_flip=False)
pred_verts = net.convert_verts(pred1, meta)
tform = torch.from_numpy(tform.reshape(1,2,3))
pred_verts2d = net.convert_2d(pred2, tform, meta)
verts = pred_verts[0]
verts2d = pred_verts2d[0]
R, t = net.solve_one(verts, verts2d)
if not net.use_eyes:
return verts, verts2d
else:
R_t = np.zeros( (4,4), dtype=np.float32)
R_t[:3,:3] = R
R_t[3,:3] = t
R_t[3,3] = 1.0
eye_verts, eye_verts2d, gaze_l, gaze_r = net.convert_eyes(eye_verts, eye_points, R_t, tform)
return verts, verts2d, eye_verts, eye_verts2d, gaze_l, gaze_r
if __name__ == "__main__":
import argparse
from utils.utils_config import get_config
from insightface.app import FaceAnalysis
parser = argparse.ArgumentParser(description='JMLR inference')
#parser.add_argument('config', type=str, help='config file')
config_file = 'configs/s1.py'
#config_file = 'configs/s2.py'
args = parser.parse_args()
cfg = get_config(config_file)
cfg2 = None
local_rank = 0
#img = cv2.imread('sample.jpg')
net = JMLRInference(cfg, local_rank)
net = net.to(local_rank)
net.eval()
app = FaceAnalysis(allowed_modules='detection')
app.prepare(ctx_id=0, det_size=(640,640), det_thresh=0.5)
index = -1
for img_path in glob.glob('/data/insightface/wcpa/image/222714/01_LeftToRight_Neutral/*.jpg'):
index+=1
img = cv2.imread(img_path)
if index==0:
net.set_raw_image_size(img.shape[1], img.shape[0])
draw = img.copy()
faces = app.get(img)
for face in faces:
if not net.use_eyes:
verts3d, verts2d = get(net, img, face.kps)
else:
verts3d, verts2d, eye_verts3d, eye_verts2d, gaze_l, gaze_r = get(net, img, face.kps)
#print(verts3d.shape, verts2d.shape, R.shape, t.shape, eye_verts3d.shape, eye_verts2d.shape)
for i in range(verts2d.shape[0]):
pt = verts2d[i].astype(np.int32)
cv2.circle(draw, pt, 2, (255,0,0), 2)
#eye_verts2d = eye_verts2d[:481,:]
if net.use_eyes:
for i in range(eye_verts2d.shape[0]):
pt = eye_verts2d[i].astype(np.int32)
cv2.circle(draw, pt, 2, (0,255,0), 2)
for gaze in [gaze_l, gaze_r]:
pt1, pt2 = gaze
cv2.arrowedLine(draw, pt1, pt2, [0, 0, 255], 10)
cv2.imwrite('./outputs/%04d.jpg'%index, draw)