-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcrsam_train.py
259 lines (215 loc) · 10.1 KB
/
crsam_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import time
import logging
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision.models import resnet18 as imagenet_resnet18
from torchvision.models import resnet50 as imagenet_resnet50
from torchvision.models import resnet101 as imagenet_resnet101
from models import cifar_resnet50, cifar_resnet18, cifar_resnet101, cifar_wrn28_10
from utils.crsam import CRSAM, enable_running_stats, disable_running_stats
from utils.dataset import CIFAR
from utils.metrics import accuracy
from utils.logger import CSVLogger, AverageMeter
from metrics.hessian import Hessian
from metrics.metrics import grad_norm, eigen_spec
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="cifar100", help='Dataset')
parser.add_argument('--model', default='resnet18')
parser.add_argument("--aug", default='basic', type=str, choices=['basic', 'cutout', 'autoaugment'], help='Data augmentation')
parser.add_argument('--epochs', type=int, default=200, help='Epochs')
parser.add_argument('--rho', type=float, default=0.1, help='rho parameter for SAM')
parser.add_argument('--gamma', type=float, default=0.1, help='gamma parameter for curvature regularizer')
parser.add_argument('--beta', type=float, default=0.01, help='beta parameter for curvature regularizer')
parser.add_argument('--lr', type=float, default=0.05, help='learning rate')
parser.add_argument('--bs', type=int, default=128, help='batch size')
parser.add_argument('--mo', type=float, default=0.9, help='momentum')
parser.add_argument('--wd', type=float, default=1e-3, help='weight decay')
parser.add_argument('--print_freq', type=int, default=100)
parser.add_argument('--seed', type=int, default=0, help='seed')
parser.add_argument('--loadckpt', default=False, action='store_true')
args = parser.parse_args()
if args.dataset == 'cifar10':
args.num_classes = 10
args.milestones = [100, 120]
args.data_dir = f"./data/{args.dataset}"
elif args.dataset == 'cifar100':
args.num_classes = 100
args.milestones = [100, 150]
args.data_dir = f"./data/{args.dataset}"
elif args.dataset == 'imagenet':
args.num_classes = 1000
args.milestones = [30, 60, 90]
args.data_dir = f"./data/{args.dataset}"
elif args.dataset == 'tinyimagenet':
args.num_classes = 200
args.milestones = [30, 60, 90]
args.data_dir = f"./data/{args.dataset}"
else:
print(f"BAD COMMAND dtype: {args.dataset}")
#random seed
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Intialize directory and create path
args.ckpt_dir = "./results"
os.makedirs(args.ckpt_dir, exist_ok=True)
logger_name = os.path.join(args.ckpt_dir, f"crsam_{args.model}_{args.dataset}_{args.aug}_run{args.seed}")
# Logging tools
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(message)s",
handlers=[
logging.FileHandler(logger_name + ".log"),
logging.StreamHandler(),
],
)
logging.info(args)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#step = 1
def run_one_epoch(phase, loader, model, criterion, optimizer, args):
#global step
loss, acc = AverageMeter(), AverageMeter()
t = time.time()
for batch_idx, inp_data in enumerate(loader, 1):
inputs, targets = inp_data
inputs, targets = inputs.to(device), targets.to(device)
if phase == 'train':
model.train()
with torch.set_grad_enabled(True):
# compute output
enable_running_stats(model)
outputs = model(inputs)
batch_loss = criterion(outputs, targets)
optimizer.o_l = batch_loss
# compute gradient
optimizer.zero_grad()
batch_loss.backward(retain_graph=True)
optimizer.first_step(zero_grad=True)
# second forward-backward pass
disable_running_stats(model)
outputs = model(inputs)
batch_loss = criterion(outputs, targets)
optimizer.w_l = batch_loss
batch_loss.backward(retain_graph=True)
optimizer.second_step(zero_grad=True)
# second forward-backward pass
enable_running_stats(model)
outputs = model(inputs)
batch_loss = criterion(outputs, targets)
optimizer.b_l = batch_loss
batch_loss.backward()
optimizer.third_step(zero_grad=True)
#if step % 100 == 0:
# model.eval()
# hessian_comp = Hessian(model, criterion, data=(inputs, targets))
# top_eigenvalues, _ = hessian_comp.eigenvalues()
# trace = hessian_comp.trace()
# eigen_logger.save_values(step, top_eigenvalues, np.mean(trace), grad_norm_l2, optimizer.w_l.item(), optimizer.o_l.item(), optimizer.b_l.item())
#step += 1
elif phase == 'val':
model.eval()
with torch.no_grad():
outputs = model(inputs)
batch_loss = criterion(outputs, targets)
else:
logging.info('Define correct phase')
quit()
loss.update(batch_loss.item(), inputs.size(0))
batch_acc = accuracy(outputs, targets, topk=(1,))[0]
acc.update(float(batch_acc), inputs.size(0))
if batch_idx % args.print_freq == 0:
info = f"Phase:{phase} -- Batch_idx:{batch_idx}/{len(loader)}" \
f"-- {acc.count / (time.time() - t):.2f} samples/sec" \
f"-- Loss:{loss.avg:.2f} -- Acc:{acc.avg:.2f}"
logging.info(info)
return loss.avg, acc.avg
def main(args):
dataset = CIFAR(args)
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
if args.model == 'resnet50':
model = cifar_resnet50(num_classes=args.num_classes)
elif args.model == 'resnet18':
model = cifar_resnet18(num_classes=args.num_classes)
elif args.model == 'resnet101':
model = cifar_resnet101(num_classes=args.num_classes)
elif args.model == 'wrn':
model = cifar_wrn28_10(num_classes=args.num_classes)
else:
print("define model")
quit()
elif 'imagenet' in args.dataset:
if args.model == 'resnet50':
model = imagenet_resnet50(num_classes=args.num_classes)
elif args.model == 'resnet18':
model = imagenet_resnet18(num_classes=args.num_classes)
elif args.model == 'resnet101':
model = imagenet_resnet101(num_classes=args.num_classes)
else:
print("define model")
quit()
else:
print("define dataset type")
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = CRSAM(model.parameters(), optim.SGD, rho=args.rho, gamma=args.gamma, beta=args.beta, lr=args.lr, momentum=args.mo, weight_decay=args.wd)
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=0.1)
base_optimizer = optimizer.base_optimizer
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(base_optimizer, T_max=args.epochs)
csv_logger = CSVLogger(args, ['Epoch', 'Lr', 'Train Loss', 'Train Accuracy', 'Test Loss', 'Test Accuracy'], logger_name + '.csv')
#eigen_logger = CSVLogger(args, ['Epoch', 'train_top_eigen', 'train_trace', 'train_grad_norm', 'test_top_eigen', 'test_trace', 'test_grad_norm'], logger_name + '_eigen.csv')
if args.loadckpt:
state = torch.load(f"{logger_name}_best.pth.tar")
model.load_state_dict(state['model'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
best_acc = state['best_acc']
start_epoch = state['epoch'] + 1
else:
start_epoch = 0
best_acc = -float('inf')
for epoch in range(start_epoch, args.epochs):
logging.info('Epoch: [%d | %d]' % (epoch, args.epochs))
trainloss, trainacc = run_one_epoch('train', dataset.train, model, criterion, optimizer, args)
logging.info('Train_Loss = {0}, Train_acc = {1}'.format(trainloss, trainacc))
valloss, valacc = run_one_epoch('val', dataset.test, model, criterion, optimizer, args)
logging.info('Val_Loss = {0}, Val_acc = {1}'.format(valloss, valacc))
lr = scheduler.optimizer.param_groups[0]['lr']
csv_logger.save_values(epoch, lr, trainloss, trainacc, valloss, valacc)
#if epoch % 10 == 0:
# train_grad_norm = grad_norm(model, criterion, optimizer, dataloader=dataset.train, lp=2)
# train_top_eigen, train_trace = eigen_spec(model, criterion, dataloader=dataset.train)
# test_grad_norm = grad_norm(model, criterion, optimizer, dataloader=dataset.test, lp=2)
# test_top_eigen, test_trace = eigen_spec(model, criterion, dataloader=dataset.test)
# eigen_logger.save_values(epoch, train_top_eigen, train_trace, train_grad_norm, test_top_eigen, test_trace, test_grad_norm)
scheduler.step()
if valacc > best_acc:
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
'best_acc': best_acc
}
torch.save(state, f"{logger_name}_best.pth.tar")
best_acc = valacc
logging.info(f'best acc:{best_acc}')
#if epoch % 100 == 0:
# state = {
# 'model': model.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'scheduler': scheduler.state_dict(),
# 'epoch': epoch,
# 'best_acc': best_acc
# }
# torch.save(state, f"{logger_name}_epoch_{epoch}.pth.tar")
if __name__ == '__main__':
main(args)