-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathilpd.py
107 lines (82 loc) · 3.44 KB
/
ilpd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
from ..gradient.mifgsm import MIFGSM
class ILPD(MIFGSM):
"""
ILPD Attack
'Improving Adversarial Transferability via Intermediate-level Perturbation Decay'(https://arxiv.org/abs/2304.13410)
Arguments:
attack (str): the name of attack.
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
coef (float): coeffcient gamma
sigma (float): noise size
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epoch=100, sigma=0.05, coef=0.1, N=1, il_pos="layer2.3"
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ilpd/resnet50 --attack aa --model=resnet50
python main.py --input_dir ./path/to/data --output_dir adv_data/ilpd/resnet50 --eval
"""
def __init__(self, **kwargs):
kwargs["model_name"] = "resnet50"
kwargs["attack"] = "ILPD"
kwargs["epoch"] = 100
kwargs["alpha"] = 1 / 255
super().__init__(**kwargs)
self.il_module = self.model[1].layer2[3]
self.sigma = 0.05
self.coef = 0.1
self.N = 1
def prep_hook(self, ori_img):
if hasattr(self, "hook"):
self.hook.remove()
with torch.no_grad():
ilout_hook = self.il_module.register_forward_hook(hook_ilout)
self.model(
ori_img + self.sigma * torch.randn(ori_img.size()).to(ori_img.device)
)
ori_ilout = self.il_module.output
ilout_hook.remove()
hook_func = get_hook_pd(ori_ilout, self.coef)
self.hook = self.il_module.register_forward_hook(hook_func)
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data (N, C, H, W): tensor for input images
labels (N,): tensor for ground-truth labels if untargetd
labels (2,N): tensor for [ground-truth, targeted labels] if targeted
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data.clone())
momentum = 0
for _ in range(self.epoch):
self.prep_hook(data)
# Obtain the output
logits = self.get_logits(
self.transform(data + delta, momentum=momentum)
)
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
return delta.detach()
def hook_ilout(module, input, output):
module.output = output
def get_hook_pd(ori_ilout, gamma):
def hook_pd(module, input, output):
return gamma * output + (1 - gamma) * ori_ilout
return hook_pd