-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathir.py
178 lines (153 loc) · 7.01 KB
/
ir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from ..utils import *
from ..gradient.mifgsm import MIFGSM
import copy
import torch.nn as nn
class InteractionLoss(nn.Module):
def __init__(self, target=None, label=None):
super(InteractionLoss, self).__init__()
assert (target is not None) and (label is not None)
self.target = target
self.label = label
def logits_interaction(self, outputs, leave_one_outputs,
only_add_one_outputs, zero_outputs):
complete_score = outputs[:, self.target] - outputs[:, self.label]
leave_one_out_score = (
leave_one_outputs[:, self.target] -
leave_one_outputs[:, self.label])
only_add_one_score = (
only_add_one_outputs[:, self.target] -
only_add_one_outputs[:, self.label])
zero_score = (
zero_outputs[:, self.target] - zero_outputs[:, self.label])
average_pairwise_interaction = (complete_score - leave_one_out_score -
only_add_one_score +
zero_score).mean()
return average_pairwise_interaction
def forward(self, outputs, leave_one_outputs, only_add_one_outputs,
zero_outputs):
return self.logits_interaction(outputs, leave_one_outputs,
only_add_one_outputs, zero_outputs)
def sample_grids(sample_grid_num=16,
grid_scale=16,
img_size=224,
sample_times=8):
grid_size = img_size // grid_scale
sample = []
for _ in range(sample_times):
grids = []
ids = np.random.randint(0, grid_scale**2, size=sample_grid_num)
rows, cols = ids // grid_scale, ids % grid_scale
for r, c in zip(rows, cols):
grid_range = (slice(r * grid_size, (r + 1) * grid_size),
slice(c * grid_size, (c + 1) * grid_size))
grids.append(grid_range)
sample.append(grids)
return sample
def sample_for_interaction(delta,
sample_grid_num,
grid_scale,
img_size,
times=16):
samples = sample_grids(
sample_grid_num=sample_grid_num,
grid_scale=grid_scale,
img_size=img_size,
sample_times=times)
only_add_one_mask = torch.zeros_like(delta).repeat(times, 1, 1, 1)
for i in range(times):
grids = samples[i]
for grid in grids:
only_add_one_mask[i:i + 1, :, grid[0], grid[1]] = 1
leave_one_mask = 1 - only_add_one_mask
only_add_one_perturbation = delta * only_add_one_mask
leave_one_out_perturbation = delta * leave_one_mask
return only_add_one_perturbation, leave_one_out_perturbation
def get_features(
model,
x,
perturbation,
leave_one_out_perturbation,
only_add_one_perturbation,
):
outputs = model(x + perturbation)
leave_one_outputs = model(x + leave_one_out_perturbation)
only_add_one_outputs = model(x + only_add_one_perturbation)
zero_outputs = model(x)
return (outputs, leave_one_outputs, only_add_one_outputs, zero_outputs)
class IR(MIFGSM):
"""
IR Attack
A Unified Approach to Interpreting and Boosting Adversarial Transferability (ICLR 2021)(https://arxiv.org/pdf/2010.04055)
Arguments:
model (torch.nn.Module): the surrogate model for attack.
epsilon (float): the perturbation budget.
grid_num (int) : the numbers of divided image blocks
grid_scale (int): the size of the grid
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1., num_scale=10
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ir/resnet18 --attack ir --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/ir/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16 / 255, alpha=1.6 / 255, epoch=10, decay=1.,
targeted=False, random_start=False, grid_scale=16, grid_num=32, sample_times=1, lam=1,
norm='linfty', loss='crossentropy', device=None, attack='ir', **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
self.grid_scale = grid_scale
#self.feature_layer = self.find_layer(feature_layer)
self.grid_num = grid_num
self.sample_times = sample_times
self.lam = lam
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
momentum = 0
for _ in range(self.epoch):
# Obtain the output
out = self.model(data+delta)
outputs_c = copy.deepcopy(out.detach())
outputs_c[:, label] = -np.inf
other_max = outputs_c.max(1)[1]
interaction_loss = InteractionLoss(
target=other_max, label=label)
average_pairwise_interaction =0
for i in range(5):
only_add_one_perturbation, leave_one_out_perturbation = \
sample_for_interaction(delta, self.grid_num,
self.grid_scale, 224,
self.sample_times)
(outputs, leave_one_outputs, only_add_one_outputs,
zero_outputs) = get_features(self.model, data, delta,
leave_one_out_perturbation,
only_add_one_perturbation)
average_pairwise_interaction += interaction_loss(
outputs, leave_one_outputs, only_add_one_outputs,
zero_outputs)
# Calculate the loss
loss1 = -self.loss(outputs,label)
loss = loss1 - self.lam *average_pairwise_interaction/32
self.model.zero_grad()
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, -momentum, self.alpha)
return delta.detach()