-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathmba.py
78 lines (65 loc) · 3.59 KB
/
mba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch.nn as nn
from ..utils import *
from ..gradient.mifgsm import MIFGSM
from torchvision.models import resnet50
import copy
from collections import OrderedDict
class MBA(MIFGSM):
"""
MBA Attack
'Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples (ICLR 2023)'(https://arxiv.org/abs/2302.05086)
Arguments:
model (torch.nn.Module): the surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
targeted (bool): targeted/untargeted attack
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/mba/ens --attack mba --model=resnet50
python main.py --input_dir ./path/to/data --output_dir adv_data/mba/ens --eval
"""
def __init__(self, model_name='resnet50', epsilon=16/255, alpha=1.6/255, epoch=10, decay=1.0, targeted=False, random_start=True,
norm='linfty', loss='crossentropy', device=None, attack='MBA', checkpoint_path='./path/to/checkpoints/', **kwargs):
self.checkpoint_path = checkpoint_path
self.source_model_path = 'resnet50_morebayesian_attack.pt'
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
def load_model(self, model_name):
# download model checkpoints from: https://drive.google.com/drive/folders/1rOa4nFGsxrw-30_DJ77X_xqj__vhE_TN
if model_name == 'resnet50':
model_path = os.path.join(self.checkpoint_path, self.source_model_path)
else:
raise ValueError('model:{} not supported, only supported "resnet50"'.format(model_name))
if os.path.exists(model_path):
pass
else:
raise ValueError("""Please download checkpoints from 'https://drive.google.com/drive/folders/1rOa4nFGsxrw-30_DJ77X_xqj__vhE_TN', and put them into the path './path/to/checkpoints'.""")
state_dict = torch.load(model_path)
mean_model = build_model(state_dict["mean_state_dict"])
sqmean_model = build_model(state_dict["sqmean_state_dict"])
mean_model = nn.DataParallel(mean_model)
model_list = []
for model_ind in range(20):
model_list.append(copy.deepcopy(mean_model))
noise_dict = OrderedDict()
for (name, param_mean), param_sqmean, param_cur in zip(mean_model.named_parameters(), sqmean_model.parameters(), model_list[-1].parameters()):
var = torch.clamp(param_sqmean.data - param_mean.data**2, 1e-30)
var = var + 0
noise_dict[name] = var.sqrt() * torch.randn_like(param_mean, requires_grad=False)
for (name, param_cur), (_, noise) in zip(model_list[-1].named_parameters(), noise_dict.items()):
param_cur.data.add_(noise, alpha=1.5)
return EnsembleModel([model for model in model_list])
def build_model(state_dict=False):
model = resnet50()
if "module" in list(state_dict.keys())[0]:
model = nn.DataParallel(model)
model.load_state_dict(state_dict)
model = model.module
else:
model.load_state_dict(state_dict)
return wrap_model(model.eval().cuda())