-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathge_advgan.py
180 lines (150 loc) · 7.26 KB
/
ge_advgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from torch import nn
import torch
from ..utils import *
from ..gradient.mifgsm import MIFGSM
import torch.nn.functional as F
from torch.autograd import Variable as V
# Define a resnet block
# modified from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type='reflect', norm_layer=nn.BatchNorm2d, use_dropout=False, use_bias=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class Generator(nn.Module):
def __init__(self,
gen_input_nc,
image_nc,
):
super(Generator, self).__init__()
encoder_lis = [
# MNIST:1*28*28
nn.Conv2d(gen_input_nc, 8, kernel_size=3, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(8),
nn.ReLU(),
# 8*26*26
nn.Conv2d(8, 16, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(16),
nn.ReLU(),
# 16*12*12
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(32),
nn.ReLU(),
# 32*5*5
]
bottle_neck_lis = [ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),]
decoder_lis = [
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(16),
nn.ReLU(),
# state size. 16 x 11 x 11
nn.ConvTranspose2d(16, 8, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(8),
nn.ReLU(),
# state size. 8 x 23 x 23
nn.ConvTranspose2d(8, image_nc, kernel_size=6, stride=1, padding=0, bias=False),
nn.Tanh()
# state size. image_nc x 28 x 28
]
self.encoder = nn.Sequential(*encoder_lis)
self.bottle_neck = nn.Sequential(*bottle_neck_lis)
self.decoder = nn.Sequential(*decoder_lis)
def forward(self, x):
x = self.encoder(x)
x = self.bottle_neck(x)
x = self.decoder(x)
return x
class GE_ADVGAN(MIFGSM):
"""
GE-ADVGAN
'GE-AdvGAN: Improving the transferability of adversarial samples by gradient editing-based adversarial generative model (SDM 2024)'(https://epubs.siam.org/doi/abs/10.1137/1.9781611978032.81)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
gamma (float): the scalar weight to trade-off the contributions of each loss function.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
c (int): The number of channels in the input images.
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1., c=3
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ge_advgan/resnet18 --attack ge_advgan --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/ge_advgan/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, attack='GE_ADVGAN', checkpoint_path='./path/to/checkpoints/', c=3, **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
self.checkpoint_path = checkpoint_path
self.c = c
self.model_name = model_name
self.netG = self.load_ge_advgan_model()
print("=> loaded trained GEadvGAN model")
def load_ge_advgan_model(self, **kwargs):
netG = Generator(self.c,self.c)
weight_name = os.path.join(self.checkpoint_path, f'{self.model_name}.pth')
if not os.path.exists(weight_name):
raise ValueError("Please download the checkpoint of the 'GE_ADVGAN' from https://drive.google.com/drive/folders/1eF-QF_NjYVQw_bCnBJGxsbsfF1E_Ay7K?usp=drive_link, and put it into the path '{}'.".format(self.checkpoint_path))
netG.load_state_dict(torch.load(weight_name))
return netG.eval().to(self.device)
def crop(self, perturbation, img_width, img_height):
if img_width % 2 == 0 and img_height % 2 == 0:
return perturbation
elif img_width % 2 == 1 and img_height % 2 == 1:
return perturbation[:,:,:-1,:-1]
elif img_width % 2 == 1 and img_height % 2 == 0:
return perturbation[:,:,:-1,:]
elif img_width % 2 == 0 and img_height % 2 == 1:
return perturbation[:,:,:,:-1]
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
data = data.clone().detach().to(self.device)
delta = self.netG(data)
delta = self.crop(delta, data.shape[2], data.shape[3])
adv_images = torch.clamp(delta, -self.epsilon, self.epsilon) + data
adv_images = torch.clamp(adv_images, img_min, img_max)
delta = adv_images - data
return delta.detach()