-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathgnp.py
93 lines (72 loc) · 3.44 KB
/
gnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
from ..utils import *
from ..attack import Attack
class GNP(Attack):
"""
GNP (Gradient Norm Penalty)
'GNP Attack: Transferable Adversarial Examples via Gradient Norm Penalty (ICIP 2023)' (https://ieeexplore.ieee.org/abstract/document/10223158)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
r (float): the step length.
beta (float): the regularization coefficient.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1, r=0.01, beta=0.8.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/gnp/resnet18 --attack gnp --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/gnp/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., r=0.01, beta=0.8, targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, attack='GNP', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = decay
self.r = r
self.beta = beta
def forward(self, data, label, **kwargs):
"""
The GNP attack procedure
Arguments:
data (N, C, H, W): tensor for input images
labels (N,): tensor for ground-truth labels if untargetd
labels (2,N): tensor for [ground-truth, targeted labels] if targeted
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
momentum = 0
for _ in range(self.epoch):
# Obtain the output
logits = self.get_logits(self.transform(data+delta))
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients
g1 = self.get_grad(loss, delta)
# Calculate the neighborhood point
g_p = g1 / (g1.abs().mean(dim=(1,2,3), keepdim=True))
# self.model.zero_grad()
# Obtain the anticipatory output
logits = self.get_logits(self.transform(data+delta+self.r*g_p))
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients
g2 = self.get_grad(loss, delta)
gt = (1 + self.beta) * g1 + self.beta * g2
# Calculate the momentum
momentum = self.get_momentum(gt, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
return delta.detach()