-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathdim.py
68 lines (56 loc) · 3.08 KB
/
dim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.nn.functional as F
from ..utils import *
from ..gradient.mifgsm import MIFGSM
class DIM(MIFGSM):
"""
DIM Attack
'Improving Transferability of Adversarial Examples with Input Diversity (CVPR 2019)'(https://arxiv.org/abs/1803.06978)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
resize_rate (float): the relative size of the resized image
diversity_prob (float): the probability for transforming the input image
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1, resize_rate=1.1, diversity_prob=0.5
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/dim/resnet18 --attack dim --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/dim/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., resize_rate=1.1, diversity_prob=0.5, targeted=False,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='DIM', **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
if resize_rate < 1:
raise Exception("Error! The resize rate should be larger than 1.")
self.resize_rate = resize_rate
self.diversity_prob = diversity_prob
def transform(self, x, **kwargs):
"""
Random transform the input images
"""
# do not transform the input image
if torch.rand(1) > self.diversity_prob:
return x
img_size = x.shape[-1]
img_resize = int(img_size * self.resize_rate)
# resize the input image to random size
rnd = torch.randint(low=min(img_size, img_resize), high=max(img_size, img_resize), size=(1,), dtype=torch.int32)
rescaled = F.interpolate(x, size=[rnd, rnd], mode='bilinear', align_corners=False)
# randomly add padding
h_rem = img_resize - rnd
w_rem = img_resize - rnd
pad_top = torch.randint(low=0, high=h_rem.item(), size=(1,), dtype=torch.int32)
pad_bottom = h_rem - pad_top
pad_left = torch.randint(low=0, high=w_rem.item(), size=(1,), dtype=torch.int32)
pad_right = w_rem - pad_left
padded = F.pad(rescaled, [pad_left.item(), pad_right.item(), pad_top.item(), pad_bottom.item()], value=0)
# resize the image back to img_size
return F.interpolate(padded, size=[img_size, img_size], mode='bilinear', align_corners=False)