-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinformation.jl
337 lines (296 loc) · 14.2 KB
/
information.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
using LogicCircuits, ProbabilisticCircuits
const KLDCache = Dict{Tuple{ProbCircuit,ProbCircuit}, Float64}
const PRCache = Dict{Tuple{ProbCircuit, LogicCircuit}, Float64}
function entropy(n::ProbCircuit; log_prob::Bool = true)
f_con(n)::Float64 = 0.0
f_lit(n)::Float64 = 0.0
f_a(n, cn)::Float64 = reduce(+, [cn...])
f_o(n, cn)::Float64 = begin
s = 0.0
if log_prob
for (logp, cent) in zip(n.log_probs, cn)
s += - logp * exp(logp)
s += exp(logp) * cent
end
else
for (p, cent) in zip(n.log_probs, cn)
s += - log(p) * p
s += p * cent
end
end
s
end
foldup_aggregate(n, f_con, f_lit, f_a, f_o, Float64)
end
"Calculate KL divergence calculation for pcs that are not necessarily identical"
function mykld(pc_node1::PlainSumNode, pc_node2::PlainSumNode,
kld_cache::KLDCache=KLDCache(), pr_constraint_cache::PRCache=PRCache())
# @assert !(pc_node1 isa PlainMulNode || pc_node2 isa PlainMulNode) "Prob⋀ not a valid pc node for KL-Divergence"
# Check if both nodes are normalized for same vtree node
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[(pc_node1, pc_node2)]
elseif children(pc_node1)[1] isa PlainProbLiteralNode
if pc_node2 isa PlainProbLiteralNode
mykld(children(pc_node1)[1], pc_node2, kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[2], pc_node2, kld_cache, pr_constraint_cache)
if literal(children(pc_node1)[1]) == literal(pc_node2)
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[1] * exp(pc_node1.log_probs[1])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[2] * exp(pc_node1.log_probs[2])
)
end
else
# The below four lines actually assign zero, but still we need to
# call it.
mykld(children(pc_node1)[1], children(pc_node2)[1], kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[1], children(pc_node2)[2], kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[2], children(pc_node2)[1], kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[2], children(pc_node2)[2], kld_cache, pr_constraint_cache)
# There are two possible matches
if literal(children(pc_node1)[1]) == literal(children(pc_node2)[1])
return get!(kld_cache, (pc_node1, pc_node2),
exp(pc_node1.log_probs[1]) * (pc_node1.log_probs[1] - pc_node2.log_probs[1]) +
exp(pc_node1.log_probs[2]) * (pc_node1.log_probs[2] - pc_node2.log_probs[2])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
exp(pc_node1.log_probs[1]) * (pc_node1.log_probs[1] - pc_node2.log_probs[2]) +
exp(pc_node1.log_probs[2]) * (pc_node1.log_probs[2] - pc_node2.log_probs[1])
)
end
end
else # the normal case
kld = 0.0
# loop through every combination of prim and sub
for (prob⋀_node1, log_theta1) in zip(children(pc_node1), pc_node1.log_probs)
for (prob⋀_node2, log_theta2) in zip(children(pc_node2), pc_node2.log_probs)
p = children(prob⋀_node1)[1]
s = children(prob⋀_node1)[2]
r = children(prob⋀_node2)[1]
t = children(prob⋀_node2)[2]
theta1 = exp(log_theta1)
p11 = pr_constraint(s, t, pr_constraint_cache)
p12 = pr_constraint(p, r, pr_constraint_cache)
p13 = theta1 * (log_theta1 - log_theta2)
p21 = mykld(p, r, kld_cache, pr_constraint_cache)
p31 = mykld(s, t, kld_cache, pr_constraint_cache)
kld += p11 * p12 * p13 + theta1 * (p11 * p21 + p12 * p31)
end
end
return get!(kld_cache, (pc_node1, pc_node2), kld)
end
end
function mykld(pc_node1::PlainProbLiteralNode, pc_node2::PlainProbLiteralNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# Check if literals are over same variables in vtree
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
# In this case probability is 1, kl divergence is 0
return get!(kld_cache, (pc_node1, pc_node2), 0.0)
end
end
function mykld(pc_node1::PlainSumNode, pc_node2::PlainProbLiteralNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
mykld(children(pc_node1)[1], pc_node2, kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[2], pc_node2, kld_cache, pr_constraint_cache)
if literal(children(pc_node1)[1]) == literal(pc_node2)
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[1] * exp(pc_node1.log_probs[1])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[2] * exp(pc_node1.log_probs[2])
)
end
end
end
function mykld(pc_node1::PlainProbLiteralNode, pc_node2::PlainSumNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
mykld(pc_node1, children(pc_node2)[1], kld_cache, pr_constraint_cache)
mykld(pc_node1, children(pc_node2)[2], kld_cache, pr_constraint_cache)
if literal(pc_node1) == literal(children(pc_node2)[1])
return get!(kld_cache, (pc_node1, pc_node2),
-pc_node2.log_probs[1]
)
else
return get!(kld_cache, (pc_node1, pc_node2),
-pc_node2.log_probs[2]
)
end
end
end
"Calculate XENT divergence calculation for pcs that are not necessarily identical"
function myxent(pc_node1::PlainSumNode, pc_node2::PlainSumNode,
kld_cache::KLDCache=KLDCache(), pr_constraint_cache::PRCache=PRCache())
# @assert !(pc_node1 isa PlainMulNode || pc_node2 isa PlainMulNode) "Prob⋀ not a valid pc node for KL-Divergence"
# Check if both nodes are normalized for same vtree node
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[(pc_node1, pc_node2)]
elseif children(pc_node1)[1] isa PlainProbLiteralNode
if pc_node2 isa PlainProbLiteralNode
myxent(children(pc_node1)[1], pc_node2, kld_cache, pr_constraint_cache)
myxent(children(pc_node1)[2], pc_node2, kld_cache, pr_constraint_cache)
if literal(children(pc_node1)[1]) == literal(pc_node2)
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[1] * exp(pc_node1.log_probs[1])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[2] * exp(pc_node1.log_probs[2])
)
end
else
# The below four lines actually assign zero, but still we need to
# call it.
myxent(children(pc_node1)[1], children(pc_node2)[1], kld_cache, pr_constraint_cache)
myxent(children(pc_node1)[1], children(pc_node2)[2], kld_cache, pr_constraint_cache)
myxent(children(pc_node1)[2], children(pc_node2)[1], kld_cache, pr_constraint_cache)
myxent(children(pc_node1)[2], children(pc_node2)[2], kld_cache, pr_constraint_cache)
# There are two possible matches
if literal(children(pc_node1)[1]) == literal(children(pc_node2)[1])
return get!(kld_cache, (pc_node1, pc_node2),
exp(pc_node1.log_probs[1]) * (pc_node1.log_probs[1] - pc_node2.log_probs[1]) +
exp(pc_node1.log_probs[2]) * (pc_node1.log_probs[2] - pc_node2.log_probs[2])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
exp(pc_node1.log_probs[1]) * (pc_node1.log_probs[1] - pc_node2.log_probs[2]) +
exp(pc_node1.log_probs[2]) * (pc_node1.log_probs[2] - pc_node2.log_probs[1])
)
end
end
else # the normal case
kld = 0.0
# loop through every combination of prim and sub
for (prob⋀_node1, log_theta1) in zip(children(pc_node1), pc_node1.log_probs)
for (prob⋀_node2, log_theta2) in zip(children(pc_node2), pc_node2.log_probs)
p = children(prob⋀_node1)[1]
s = children(prob⋀_node1)[2]
r = children(prob⋀_node2)[1]
t = children(prob⋀_node2)[2]
theta1 = exp(log_theta1)
p11 = pr_constraint(s, t, pr_constraint_cache)
p12 = pr_constraint(p, r, pr_constraint_cache)
p13 = - theta1 * log_theta2
p21 = myxent(p, r, kld_cache, pr_constraint_cache)
p31 = myxent(s, t, kld_cache, pr_constraint_cache)
kld += p11 * p12 * p13 + theta1 * (p11 * p21 + p12 * p31)
end
end
return get!(kld_cache, (pc_node1, pc_node2), kld)
end
end
function myxent(pc_node1::PlainProbLiteralNode, pc_node2::PlainProbLiteralNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# Check if literals are over same variables in vtree
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
# In this case probability is 1, kl divergence is 0
return get!(kld_cache, (pc_node1, pc_node2), 0.0)
end
end
function myxent(pc_node1::PlainSumNode, pc_node2::PlainProbLiteralNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
mykld(children(pc_node1)[1], pc_node2, kld_cache, pr_constraint_cache)
mykld(children(pc_node1)[2], pc_node2, kld_cache, pr_constraint_cache)
if literal(children(pc_node1)[1]) == literal(pc_node2)
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[1] * exp(pc_node1.log_probs[1])
)
else
return get!(kld_cache, (pc_node1, pc_node2),
pc_node1.log_probs[2] * exp(pc_node1.log_probs[2])
)
end
end
end
function myxent(pc_node1::PlainProbLiteralNode, pc_node2::PlainSumNode,
kld_cache::KLDCache, pr_constraint_cache::PRCache)
# @assert variables(pc_node1) == variables(pc_node2) "Both nodes not normalized for same vtree node"
if (pc_node1, pc_node2) in keys(kld_cache) # Cache hit
return kld_cache[pc_node1, pc_node2]
else
myxent(pc_node1, children(pc_node2)[1], kld_cache, pr_constraint_cache)
myxent(pc_node1, children(pc_node2)[2], kld_cache, pr_constraint_cache)
if literal(pc_node1) == literal(children(pc_node2)[1])
return get!(kld_cache, (pc_node1, pc_node2),
-pc_node2.log_probs[1]
)
else
return get!(kld_cache, (pc_node1, pc_node2),
-pc_node2.log_probs[2]
)
end
end
end
"""
Calculate the probability of the logic formula given by LC for the PC
"""
function pr_constraint(pc_node::PlainProbCircuit, lc_node, cache::PRCache=PRCache())::Float64
# TODO require that both circuits have an equal vtree for safety. If they don't, then first convert them to have a vtree
# @assert respects_vtree(lc_node, vtree(pc_node)) "Both circuits do not have an equal vtree"
# Cache hit
if (pc_node, lc_node) in keys(cache)
return cache[pc_node, lc_node]
# Boundary cases
elseif isliteralgate(pc_node)
# Both are literals, just check whether they agrees with each other
if isliteralgate(lc_node)
if literal(pc_node) == literal(lc_node)
return get!(cache, (pc_node, lc_node), 1.0)
else
return get!(cache, (pc_node, lc_node), 0.0)
end
else
pr_constraint(pc_node, children(lc_node)[1], cache)
if length(children(lc_node)) > 1
pr_constraint(pc_node, children(lc_node)[2], cache)
return get!(cache, (pc_node, lc_node), 1.0)
else
return get!(cache, (pc_node, lc_node),
literal(children(lc_node)[1]) == literal(pc_node) ? 1.0 : 0.0)
end
end
# The pc is true
elseif isliteralgate(children(pc_node)[1])
theta = exp(pc_node.log_probs[1])
return get!(cache, (pc_node, lc_node),
theta * pr_constraint(children(pc_node)[1], lc_node, cache) +
(1.0 - theta) * pr_constraint(children(pc_node)[2], lc_node, cache))
# Both pcs are not trivial
else
prob = 0.0
for (prob⋀_node, log_theta) in zip(children(pc_node), pc_node.log_probs)
p = children(prob⋀_node)[1]
s = children(prob⋀_node)[2]
theta = exp(log_theta)
for lc⋀_node in children(lc_node)
r = children(lc⋀_node)[1]
t = children(lc⋀_node)[2]
prob += theta * pr_constraint(p, r, cache) * pr_constraint(s, t, cache)
end
end
return get!(cache, (pc_node, lc_node), prob)
end
end