-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathPG_Cartpole.py
217 lines (156 loc) · 6.88 KB
/
PG_Cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import tensorflow as tf
import numpy as np
import gym
import sys
import time
def create_environment():
env = gym.make('CartPole-v0')
env = env.unwrapped
env.seed(1)
state = env.reset()
state_size = len(state)
action_size = env.action_space.n
return env, state_size, action_size
def test_environment():
env, _, _ = create_environment()
episodes = 1
for _ in range(episodes):
print(env.reset())
env.render()
total_rewards = 0
done = False
while not done:
action = env.action_space.sample()
state, reward, done, info = env.step(action)
env.render()
total_rewards += reward
print('action:', action, 'reward:', reward)
time.sleep(0.5)
print('[*] Total Reward:',total_rewards)
def discount_and_normalize_rewards(episode_rewards, gamma):
discounted_episode_rewards = np.zeros_like(episode_rewards, dtype=np.float32)
cumulative = 0.0
for i in reversed(range(len(episode_rewards))):
cumulative = cumulative * gamma + episode_rewards[i]
discounted_episode_rewards[i] = cumulative
mean = np.mean(discounted_episode_rewards)
std = np.std(discounted_episode_rewards)
discounted_episode_rewards = (discounted_episode_rewards - mean) / std
return discounted_episode_rewards
class PGNetwork():
def __init__(self, state_size, action_size, learning_rate, name='PGNetwork'):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = learning_rate
with tf.name_scope(name):
self.input_state = tf.placeholder(tf.float32, [None, state_size], name='input_state')
self.input_action = tf.placeholder(tf.int32, [None, action_size], name='input_action')
self.input_rewards = tf.placeholder(tf.float32, [None, ], name='input_rewards')
self.input_mean_reward = tf.placeholder(tf.float32, name='input_mean_reward')
fc1 = tf.contrib.layers.fully_connected(
inputs = self.input_state,
num_outputs = 10,
activation_fn = tf.nn.relu,
weights_initializer = tf.contrib.layers.xavier_initializer())
fc2 = tf.contrib.layers.fully_connected(
inputs = fc1,
num_outputs = action_size,
activation_fn = tf.nn.relu,
weights_initializer = tf.contrib.layers.xavier_initializer())
fc3 = tf.contrib.layers.fully_connected(
inputs = fc2,
num_outputs = action_size,
activation_fn = None,
weights_initializer = tf.contrib.layers.xavier_initializer())
self.output_action = tf.nn.softmax(fc3)
neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits=fc3, labels=self.input_action)
self.loss = tf.reduce_mean(neg_log_prob * self.input_rewards)
self.train = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)
def train():
env, state_size, action_size = create_environment()
# Hyperparameters
max_episodes = 10000
learning_rate = 0.01
gamma = 0.95
tf.reset_default_graph()
PG = PGNetwork(state_size, action_size, learning_rate)
writer = tf.summary.FileWriter('PG_Cartpole_log')
tf.summary.scalar('Loss', PG.loss)
tf.summary.scalar('Reward mean', PG.input_mean_reward)
write_op = tf.summary.merge_all()
saver = tf.train.Saver()
all_rewards = []
total_rewards = 0
maximum_reward_recorded = 0
episode_states, episode_actions, episode_rewards = [], [], []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for episode in range(max_episodes):
episode_rewards_sum = 0
state = env.reset()
env.render()
done = False
while not done:
output_action = sess.run(PG.output_action, feed_dict={PG.input_state: state.reshape([1, 4])})
action = np.random.choice(range(action_size), p=output_action.ravel())
new_state, reward, done, info = env.step(action)
env.render()
episode_states.append(state)
a = np.zeros(action_size)
a[action] = 1
episode_actions.append(a)
episode_rewards.append(reward)
state = new_state
episode_rewards_sum = np.sum(episode_rewards)
all_rewards.append(episode_rewards_sum)
total_rewards = np.sum(all_rewards)
mean_reward = np.divide(total_rewards, episode + 1)
maximum_reward_recorded = np.amax(all_rewards)
print('='*20)
print('Episode:', episode)
print('Reward:', episode_rewards_sum)
print('Mean Reward:', mean_reward)
print('Max reward so far:', maximum_reward_recorded)
episode_rewards = discount_and_normalize_rewards(episode_rewards, gamma)
loss, _ = sess.run([PG.loss, PG.train], feed_dict={
PG.input_state: np.vstack(np.array(episode_states)),
PG.input_action: np.vstack(np.array(episode_actions)),
PG.input_rewards: episode_rewards
})
summary = sess.run(write_op, feed_dict={
PG.input_state: np.vstack(np.array(episode_states)),
PG.input_action: np.vstack(np.array(episode_actions)),
PG.input_rewards: episode_rewards,
PG.input_mean_reward: mean_reward
})
writer.add_summary(summary, episode)
writer.flush()
episode_states, episode_actions, episode_rewards = [], [], []
if episode % 5 == 0:
save_path = saver.save(sess, './model/model.ckpt')
print('[*] Model Saved:', save_path)
print('Train done')
def play():
env, state_size, action_size = create_environment()
learning_rate = 0.01
with tf.Session() as sess:
PG = PGNetwork(state_size, action_size, learning_rate)
saver = tf.train.Saver()
saver.restore(sess, "./model/model.ckpt")
state = env.reset()
env.render()
done = False
episode_rewards = []
while not done:
output_action = sess.run(PG.output_action, feed_dict={PG.input_state: state.reshape([1, 4])})
action = np.random.choice(range(action_size), p=output_action.ravel())
state, reward, done, info = env.step(action)
env.render()
episode_rewards.append(reward)
episode_rewards_sum = np.sum(episode_rewards)
print('Episode Rewards:', episode_rewards_sum)
if __name__ == '__main__':
if sys.argv[1] == '--train':
train()
elif sys.argv[1] == '--play':
play()