-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_adv.py
289 lines (235 loc) · 12.4 KB
/
main_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
'''
Adversarial Training
'''
import os
import sys
import torch
import pickle
import argparse
import torch.optim
import torch.nn as nn
import torch.utils.data
import matplotlib.pyplot as plt
import torchvision.models as models
from utils import *
parser = argparse.ArgumentParser(description='PyTorch Adversarial Training')
########################## data setting ##########################
parser.add_argument('--data', type=str, default='data/cifar10', help='location of the data corpus', required=True)
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset [cifar10, cifar100, tinyimagenet]', required=True)
########################## model setting ##########################
parser.add_argument('--arch', type=str, default='resnet18', help='model architecture [resnet18, wideresnet, vgg16]', required=True)
parser.add_argument('--depth_factor', default=34, type=int, help='depth-factor of wideresnet')
parser.add_argument('--width_factor', default=10, type=int, help='width-factor of wideresnet')
########################## basic setting ##########################
parser.add_argument('--seed', default=None, type=int, help='random seed')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--resume', action="store_true", help="resume from checkpoint")
parser.add_argument('--pretrained', default=None, type=str, help='pretrained model')
parser.add_argument('--eval', action="store_true", help="evaluation pretrained model")
parser.add_argument('--print_freq', default=50, type=int, help='logging frequency during training')
parser.add_argument('--save_dir', help='The directory used to save the trained models', default=None, type=str)
########################## training setting ##########################
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--decreasing_lr', default='50,150', help='decreasing strategy')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay')
parser.add_argument('--epochs', default=200, type=int, help='number of total epochs to run')
########################## attack setting ##########################
parser.add_argument('--norm', default='linf', type=str, help='linf or l2')
parser.add_argument('--train_eps', default=8, type=float, help='epsilon of attack during training')
parser.add_argument('--train_step', default=10, type=int, help='itertion number of attack during training')
parser.add_argument('--train_gamma', default=2, type=float, help='step size of attack during training')
parser.add_argument('--train_randinit', action='store_false', help='randinit usage flag (default: on)')
parser.add_argument('--test_eps', default=8, type=float, help='epsilon of attack during testing')
parser.add_argument('--test_step', default=20, type=int, help='itertion number of attack during testing')
parser.add_argument('--test_gamma', default=2, type=float, help='step size of attack during testing')
parser.add_argument('--test_randinit', action='store_false', help='randinit usage flag (default: on)')
########################## SWA setting ##########################
parser.add_argument('--swa', action='store_true', help='swa usage flag (default: off)')
parser.add_argument('--swa_start', type=float, default=55, metavar='N', help='SWA start epoch number (default: 55)')
parser.add_argument('--swa_c_epochs', type=int, default=1, metavar='N', help='SWA model collection frequency/cycle length in epochs (default: 1)')
########################## KD setting ##########################
parser.add_argument('--lwf', action='store_true', help='lwf usage flag (default: off)')
parser.add_argument('--t_weight1', type=str, default=None, required=False, help='pretrained weight for teacher1')
parser.add_argument('--t_weight2', type=str, default=None, required=False, help='pretrained weight for teacher2')
parser.add_argument('--coef_ce', type=float, default=0.3, help='coef for CE')
parser.add_argument('--coef_kd1', type=float, default=0.1, help='coef for KD1')
parser.add_argument('--coef_kd2', type=float, default=0.6, help='coef for KD2')
parser.add_argument('--temperature', type=float, default=2.0, help='temperature of knowledge distillation loss')
parser.add_argument('--lwf_start', type=int, default=0, metavar='N', help='start point of lwf (default: 200)')
parser.add_argument('--lwf_end', type=int, default=200, metavar='N', help='end point of lwf (default: 200)')
def main():
args = parser.parse_args()
args.train_eps = args.train_eps / 255
args.train_gamma = args.train_gamma / 255
args.test_eps = args.test_eps / 255
args.test_gamma = args.test_gamma / 255
print_args(args)
print(args)
torch.cuda.set_device(int(args.gpu))
if args.seed:
print('set random seed = ', args.seed)
setup_seed(args.seed)
train_loader, val_loader, test_loader, model, swa_model, teacher1, teacher2 = setup_dataset_models(args)
if args.swa:
swa_model.cuda()
swa_n = 0
if args.lwf:
teacher1.cuda()
teacher2.cuda()
model.cuda()
########################## optimizer and scheduler ##########################
decreasing_lr = list(map(int, args.decreasing_lr.split(',')))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
######################### only evaluation ###################################
if args.eval:
assert args.pretrained
pretrained_model = torch.load(args.pretrained, map_location = torch.device('cuda:'+str(args.gpu)))
if args.swa:
print('loading from swa_state_dict')
pretrained_model = pretrained_model['swa_state_dict']
else:
print('loading from state_dict')
if 'state_dict' in pretrained_model.keys():
pretrained_model = pretrained_model['state_dict']
model.load_state_dict(pretrained_model)
test(test_loader, model, criterion, args)
test_adv(test_loader, model, criterion, args)
return
os.makedirs(args.save_dir, exist_ok=True)
########################## loading teacher model weight ##########################
if args.lwf:
print('loading teacher model')
t1_checkpoint = torch.load(args.t_weight1, map_location = torch.device('cuda:'+str(args.gpu)))
if 'state_dict' in t1_checkpoint.keys():
t1_checkpoint = t1_checkpoint['state_dict']
teacher1.load_state_dict(t1_checkpoint)
t2_checkpoint = torch.load(args.t_weight2, map_location = torch.device('cuda:'+str(args.gpu)))
if 'state_dict' in t2_checkpoint.keys():
t2_checkpoint = t2_checkpoint['state_dict']
teacher2.load_state_dict(t2_checkpoint)
print('test for teacher1')
test(test_loader, teacher1, criterion, args)
test_adv(test_loader, teacher1, criterion, args)
print('test for teacher2')
test(test_loader, teacher2, criterion, args)
test_adv(test_loader, teacher2, criterion, args)
########################## resume ##########################
start_epoch = 0
if args.resume:
print('resume from checkpoint.pth.tar')
checkpoint = torch.load(os.path.join(args.save_dir, 'checkpoint.pth.tar'), map_location = torch.device('cuda:'+str(args.gpu)))
best_sa = checkpoint['best_sa']
best_ra = checkpoint['best_ra']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
all_result = checkpoint['result']
if args.swa:
best_sa_swa = checkpoint['best_sa_swa']
best_ra_swa = checkpoint['best_ra_swa']
swa_model.load_state_dict(checkpoint['swa_state_dict'])
swa_n = checkpoint['swa_n']
else:
all_result = {}
all_result['train_acc'] = []
all_result['val_sa'] = []
all_result['val_ra'] = []
all_result['test_sa'] = []
all_result['test_ra'] = []
best_sa = 0
best_ra = 0
if args.swa:
all_result['val_sa_swa'] = []
all_result['val_ra_swa'] = []
all_result['test_sa_swa'] = []
all_result['test_ra_swa'] = []
swa_n = 0
best_sa_swa = 0
best_ra_swa = 0
is_sa_best = False
is_ra_best = False
is_sa_best_swa = False
is_ra_best_swa = False
########################## training process ##########################
for epoch in range(start_epoch, args.epochs):
print(optimizer.state_dict()['param_groups'][0]['lr'])
if args.lwf and epoch >= args.lwf_start and epoch < args.lwf_end:
print('adversarial training with LWF')
train_acc = train_epoch_adv_dual_teacher(train_loader, model, teacher1, teacher2, criterion, optimizer, epoch, args)
else:
print('baseline adversarial training')
train_acc = train_epoch_adv(train_loader, model, criterion, optimizer, epoch, args)
all_result['train_acc'].append(train_acc)
scheduler.step()
###validation###
val_sa = test(val_loader, model, criterion, args)
val_ra = test_adv(val_loader, model, criterion, args)
test_sa = test(test_loader, model, criterion, args)
test_ra = test_adv(test_loader, model, criterion, args)
all_result['val_sa'].append(val_sa)
all_result['val_ra'].append(val_ra)
all_result['test_sa'].append(test_sa)
all_result['test_ra'].append(test_ra)
is_sa_best = val_sa > best_sa
best_sa = max(val_sa, best_sa)
is_ra_best = val_ra > best_ra
best_ra = max(val_ra, best_ra)
checkpoint_state = {
'best_sa': best_sa,
'best_ra': best_ra,
'epoch': epoch+1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'result': all_result
}
if args.swa and epoch >= args.swa_start and (epoch - args.swa_start) % args.swa_c_epochs == 0:
# SWA
moving_average(swa_model, model, 1.0 / (swa_n + 1))
swa_n += 1
bn_update(train_loader, swa_model)
val_sa_swa = test(val_loader, swa_model, criterion, args)
val_ra_swa = test_adv(val_loader, swa_model, criterion, args)
test_sa_swa = test(test_loader, swa_model, criterion, args)
test_ra_swa = test_adv(test_loader, swa_model, criterion, args)
all_result['val_sa_swa'].append(val_sa_swa)
all_result['val_ra_swa'].append(val_ra_swa)
all_result['test_sa_swa'].append(test_sa_swa)
all_result['test_ra_swa'].append(test_ra_swa)
is_sa_best_swa = val_sa_swa > best_sa_swa
best_sa_swa = max(val_sa_swa, best_sa_swa)
is_ra_best_swa = val_ra_swa > best_ra_swa
best_ra_swa = max(val_ra_swa, best_ra_swa)
checkpoint_state.update({
'swa_state_dict': swa_model.state_dict(),
'swa_n': swa_n,
'best_sa_swa': best_sa_swa,
'best_ra_swa': best_ra_swa
})
elif args.swa:
all_result['val_sa_swa'].append(val_sa)
all_result['val_ra_swa'].append(val_ra)
all_result['test_sa_swa'].append(test_sa)
all_result['test_ra_swa'].append(test_ra)
checkpoint_state.update({
'result': all_result
})
save_checkpoint(checkpoint_state, is_sa_best, is_ra_best, is_sa_best_swa, is_ra_best_swa, args.save_dir)
plt.plot(all_result['train_acc'], label='train_acc')
plt.plot(all_result['test_sa'], label='SA')
plt.plot(all_result['test_ra'], label='RA')
if args.swa:
plt.plot(all_result['test_sa_swa'], label='SWA_SA')
plt.plot(all_result['test_ra_swa'], label='SWA_RA')
plt.legend()
plt.savefig(os.path.join(args.save_dir, 'net_train.png'))
plt.close()
if __name__ == '__main__':
main()