-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_tracker_drone_no_screen.py
491 lines (403 loc) · 20.2 KB
/
object_tracker_drone_no_screen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
# comment out below line to enable tensorflow logging outputs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import time
import tensorflow as tf
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
from absl import app, flags, logging
from absl.flags import FLAGS
import core.utils as utils
from core.yolov4 import filter_boxes
from tensorflow.python.saved_model import tag_constants
from core.config import cfg
from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
from Custom.coordinates import FramesToCoordinatesAndDistance
# deep sort imports
from deep_sort import preprocessing, nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt')
flags.DEFINE_string('weights', './checkpoints/yolov4-416',
'path to weights file')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_string('video', './data/video/test.mp4', 'path to input video or set to 0 for webcam')
flags.DEFINE_string('output', None, 'path to output video')
flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file')
flags.DEFINE_float('iou', 0.45, 'iou threshold')
flags.DEFINE_float('score', 0.50, 'score threshold')
flags.DEFINE_boolean('dont_show', False, 'dont show video output')
flags.DEFINE_boolean('info', True, 'show detailed info of tracked objects')
flags.DEFINE_boolean('count', False, 'count objects being tracked on screen')
from dronekit import connect, VehicleMode, LocationGlobal, LocationGlobalRelative
import time
import math
vehicle = connect('127.0.0.1:14551', wait_ready=True)
# Use returned Vehicle object to query device state - e.g. to get the mode:
def change_mode( mode):
print("Changing to mode: {0}".format(mode))
vehicle.mode = VehicleMode(mode)
while vehicle.mode.name != mode:
print(' ... polled mode: {0}'.format(mode))
time.sleep(1)
def arm_and_takeoff(aTargetAltitude):
"""
Arms vehicle and fly to aTargetAltitude.
"""
print("Basic pre-arm checks")
# Don't let the user try to arm until autopilot is ready
while not vehicle.is_armable:
print(" Waiting for vehicle to initialise...")
time.sleep(1)
# vehicle.mode = VehicleMode("GUIDED")
while vehicle.mode.name!="GUIDED":
print("vechicle needs to be changed to guided mode waiting ...")
time.sleep(1)
print("Arming motors")
# Copter should arm in GUIDED mode
vehicle.armed = True
while not vehicle.armed :
print(" Waiting for arming...")
time.sleep(1)
print("Taking off!")
vehicle.simple_takeoff(aTargetAltitude) # Take off to target altitude
# Wait until the vehicle reaches a safe height before processing the goto (otherwise the command
# after Vehicle.simple_takeoff will execute immediately).
while True:
print(" Altitude: ", vehicle.location.global_relative_frame.alt)
if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95: #Trigger just below target alt.
print("Reached target altitude")
break
time.sleep(1)
def get_location_metres(original_location, dNorth, dEast):
"""
Returns a LocationGlobal object containing the latitude/longitude `dNorth` and `dEast` metres from the
specified `original_location`. The returned LocationGlobal has the same `alt` value
as `original_location`.
The function is useful when you want to move the vehicle around specifying locations relative to
the current vehicle position.
The algorithm is relatively accurate over small distances (10m within 1km) except close to the poles.
For more information see:
http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-latitude-longitude-by-some-amount-of-meters
"""
earth_radius = 6378137.0 #Radius of "spherical" earth
#Coordinate offsets in radians
dLat = dNorth/earth_radius
dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180))
#New position in decimal degrees
newlat = original_location.lat + (dLat * 180/math.pi)
newlon = original_location.lon + (dLon * 180/math.pi)
if type(original_location) is LocationGlobal:
targetlocation=LocationGlobal(newlat, newlon,original_location.alt)
elif type(original_location) is LocationGlobalRelative:
targetlocation=LocationGlobalRelative(newlat, newlon,original_location.alt)
else:
raise Exception("Invalid Location object passed")
return targetlocation
def get_distance_metres(aLocation1, aLocation2):
"""
Returns the ground distance in metres between two LocationGlobal objects.
This method is an approximation, and will not be accurate over large distances and close to the
earth's poles. It comes from the ArduPilot test code:
https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py
"""
dlat = aLocation2.lat - aLocation1.lat
dlong = aLocation2.lon - aLocation1.lon
return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5
def goto(dNorth, dEast, gotoFunction=vehicle.simple_goto):
"""
Moves the vehicle to a position dNorth metres North and dEast metres East of the current position.
The method takes a function pointer argument with a single `dronekit.lib.LocationGlobal` parameter for
the target position. This allows it to be called with different position-setting commands.
By default it uses the standard method: dronekit.lib.Vehicle.simple_goto().
The method reports the distance to target every two seconds.
"""
currentLocation = vehicle.location.global_relative_frame
targetLocation = get_location_metres(currentLocation, dNorth, dEast)
targetDistance = get_distance_metres(currentLocation, targetLocation)
gotoFunction(targetLocation)
#print "DEBUG: targetLocation: %s" % targetLocation
#print "DEBUG: targetLocation: %s" % targetDistance
prevRemaining=9999999
while vehicle.mode.name=="GUIDED": #Stop action if we are no longer in guided mode.
#print "DEBUG: mode: %s" % vehicle.mode.name
remainingDistance=get_distance_metres(vehicle.location.global_relative_frame, targetLocation)
print("Distance to target: ", remainingDistance)
if remainingDistance>prevRemaining : #Just below target, in case of undershoot.
print("Reached target")
break
prevRemaining=remainingDistance
time.sleep(2)
time.sleep(2)
def drone_Frame_relative_goto(yaxis,xaxis,deg):
yold=xaxis*math.sin(math.radians(deg))+yaxis*math.cos(math.radians(deg))
xold=xaxis*math.cos(math.radians(deg))-yaxis*math.sin(math.radians(deg))
goto(yold,xold)
# drone_Frame_relative_goto(10,10)
# deg=315
# drone_Frame_relative_goto(10,-10)
# vehicle.mode = VehicleMode("RTL")
def main(_argv):
deg=0
# Definition of the parameters
max_cosine_distance = 0.4
nn_budget = None
nms_max_overlap = 1.0
# initialize deep sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
# calculate cosine distance metric
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
# initialize tracker
tracker = Tracker(metric)
# load configuration for object detector
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_size = FLAGS.size
video_path = FLAGS.video
# load tflite model if flag is set
if FLAGS.framework == 'tflite':
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
# otherwise load standard tensorflow saved model
else:
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
# begin video capture
try:
vid = cv2.VideoCapture(int(video_path))
except:
vid = cv2.VideoCapture(video_path)
out = None
# get video ready to save locally if flag is set
if FLAGS.output:
# by default VideoCapture returns float instead of int
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(vid.get(cv2.CAP_PROP_FPS))
codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))
arm_and_takeoff(10)
frame_num = 0
# while video is running
while True:
return_value, frame = vid.read()
if return_value:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
else:
print('Video has ended or failed, try a different video format!')
break
frame_num +=1
print('Frame #: ', frame_num)
frame_size = frame.shape[:2]
# print("frame_size",frame_size)
image_data = cv2.resize(frame, (input_size, input_size))
image_data = image_data / 255.
image_data = image_data[np.newaxis, ...].astype(np.float32)
start_time = time.time()
# run detections on tflite if flag is set
if FLAGS.framework == 'tflite':
interpreter.set_tensor(input_details[0]['index'], image_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
# run detections using yolov3 if flag is set
if FLAGS.model == 'yolov3' and FLAGS.tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
batch_data = tf.constant(image_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=FLAGS.iou,
score_threshold=FLAGS.score
)
# convert data to numpy arrays and slice out unused elements
num_objects = valid_detections.numpy()[0]
bboxes = boxes.numpy()[0]
bboxes = bboxes[0:int(num_objects)]
scores = scores.numpy()[0]
scores = scores[0:int(num_objects)]
classes = classes.numpy()[0]
classes = classes[0:int(num_objects)]
# format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, width, height
original_h, original_w, _ = frame.shape
bboxes = utils.format_boxes(bboxes, original_h, original_w)
# store all predictions in one parameter for simplicity when calling functions
pred_bbox = [bboxes, scores, classes, num_objects]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to customize tracker for only people)
allowed_classes = ['tank']
# loop through objects and use class index to get class name, allow only classes in allowed_classes list
names = []
deleted_indx = []
for i in range(num_objects):
class_indx = int(classes[i])
class_name = class_names[class_indx]
if class_name not in allowed_classes:
deleted_indx.append(i)
else:
names.append(class_name)
names = np.array(names)
count = len(names)
if FLAGS.count:
cv2.putText(frame, "Objects being tracked: {}".format(count), (5, 35), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2, (0, 255, 0), 2)
print("Objects being tracked: {}".format(count))
# delete detections that are not in allowed_classes
bboxes = np.delete(bboxes, deleted_indx, axis=0)
scores = np.delete(scores, deleted_indx, axis=0)
# encode yolo detections and feed to tracker
features = encoder(frame, bboxes)
detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(bboxes, scores, names, features)]
#initialize color map
cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]
# run non-maxima supression
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
classes = np.array([d.class_name for d in detections])
indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
#Boom added-----------------------------------------------------------------------
midx=int(frame_size[1]/2)
midy=int(frame_size[0]/2)
drone_track_id=0
drone_track_age=0
drone_track_x=0
drone_track_y=0
box_mid_y=midy
box_mid_x=midx
# update tracks
cntno=0
for track in tracker.tracks:
cntno+=1
if(cntno>=2):
break
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
class_name = track.get_class()
# draw bbox on screen
color = colors[int(track.track_id) % len(colors)]
color = [i * 255 for i in color]
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1]-30)), (int(bbox[0])+(len(class_name)+len(str(track.track_id)))*17, int(bbox[1])), color, -1)
cv2.putText(frame, class_name + "-" + str(track.track_id),(int(bbox[0]), int(bbox[1]-10)),0, 0.75, (255,255,255),2)
#Boom added-------------------------------------------------------------------------
if(track._max_age>drone_track_age):
box_mid_x=(int(bbox[0])+int(bbox[2]))/2
box_mid_y=(int(bbox[1]) +int(bbox[3]))/2
drone_track_age=track._max_age
drone_track_id=track.track_id
drone_track_x=midx-box_mid_x
drone_track_y=midy-box_mid_y
# if enable info flag then print details about each track
if FLAGS.info:
print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax): {}".format(str(track.track_id), class_name, (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))))
# midx=int(frame_size[1]/2)
# midy=int(frame_size[0]/2)
# box_mid_x=(int(bbox[0])+int(bbox[2]))/2
# box_mid_y=(int(bbox[1]) +int(bbox[3]))/2
# x_axis=""
# y_axis=""
# if(box_mid_x>midx):
# print("move_right ",box_mid_x-midx)
# x_axis=f"move_right {box_mid_x-midx}"
# else:
# print("move left ",midx-box_mid_x)
# x_axis=f"move left {midx-box_mid_x}"
# if(box_mid_y<midy):
# print("move up",midy-box_mid_y)
# y_axis=f"move up {midy-box_mid_y}"
# else:
# print("move down",box_mid_y-midy)
# y_axis=f"move down {box_mid_y-midy}"
# cv2.putText(frame, x_axis,(int(0.8*frame_size[1]), int( 0.1*frame_size[0])),0, 0.75, (255,255,255),2)
# cv2.putText(frame, y_axis,(int(0.8*frame_size[1]), int( 0.2*frame_size[0])),0, 0.75, (255,255,255),2)
if cntno!=0:
#Boom added ------------------------------------------------------------------
x_axis=""
y_axis=""
if(drone_track_x<0):
print("move_right ",drone_track_x*-1)
x_axis=f"move_right {drone_track_x*-1}"
else:
print("move left ",drone_track_x)
x_axis=f"move left {drone_track_x}"
if(drone_track_y>0):
print("move up",drone_track_y)
y_axis=f"move up {drone_track_y}"
else:
print("move down",drone_track_y*-1)
y_axis=f"move down {drone_track_y*-1}"
# cv2.putText(frame, f"tracking object {drone_track_id}",(int(0.8*frame_size[1]), int( 0.05*frame_size[0])),0, 0.75, (255,0,0),2)
# cv2.putText(frame, x_axis,(int(0.8*frame_size[1]), int( 0.15*frame_size[0])),0, 0.75, (255,0,0),2)
# cv2.putText(frame, y_axis,(int(0.8*frame_size[1]), int( 0.25*frame_size[0])),0, 0.75, (255,0,0),2)
cv2.line(frame, (int(box_mid_x),int(box_mid_y)),(int(midx),int(midy)), (255,0,0),1)
# For now we are assuming we at these coordinates
dronePresentCoordinates=[vehicle.location.global_frame.lat,vehicle.location.global_frame.lon]
# in meters
presentAltitude=vehicle.location.global_relative_frame.alt
temp=FramesToCoordinatesAndDistance(dronePresentCoordinates,[midx,midy],[box_mid_x,box_mid_y],presentAltitude,[frame_size[1],frame_size[0]])
drone_Frame_relative_goto(temp['dist_y_meters'],temp['dist_x_meters'],deg)
deg+=temp['bearing']%360
# for printing on image
tempstr=f"angle with north : {temp['bearing']}, shortest distance : {temp['dist']} meters "
cv2.putText(frame, tempstr,(int(0.01*frame_size[1]), int( 0.05*frame_size[0])),0, 0.75, (255,0,0),2)
tempstr=f"dist_x_meters: {temp['dist_x_meters']}, dist_y_meters: {temp['dist_y_meters']}"
cv2.putText(frame, tempstr,(int(0.01*frame_size[1]), int( 0.15*frame_size[0])),0, 0.75, (255,0,0),2)
tempstr=f"newLongitude: {temp['newLongitude']}, newLatitude: {temp['newLatitude']}"
cv2.putText(frame, tempstr,(int(0.01*frame_size[1]), int( 0.25*frame_size[0])),0, 0.75, (255,0,0),2)
else:
print("tank not detected in the frame")
# calculate frames per second of running detections
fps = 1.0 / (time.time() - start_time)
print("FPS: %.2f" % fps)
# print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax): {}".format(str(track.track_id), class_name, (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))))
result = np.asarray(frame)
result = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
if not FLAGS.dont_show:
cv2.imshow("Output Video", result)
# if output flag is set, save video file
if FLAGS.output:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
change_mode("RTL")