forked from karpathy/char-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.lua
161 lines (140 loc) · 5.89 KB
/
sample.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
--[[
This file samples characters from a trained model
Code is based on implementation in
https://github.com/oxford-cs-ml-2015/practical6
]]--
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
require 'lfs'
require 'util.OneHot'
require 'util.misc'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Sample from a character-level language model')
cmd:text()
cmd:text('Options')
-- required:
cmd:argument('-model','model checkpoint to use for sampling')
-- optional parameters
cmd:option('-seed',123,'random number generator\'s seed')
cmd:option('-sample',1,' 0 to use max at each timestep, 1 to sample at each timestep')
cmd:option('-primetext',"",'used as a prompt to "seed" the state of the LSTM using a given sequence, before we sample.')
cmd:option('-length',2000,'number of characters to sample')
cmd:option('-temperature',1,'temperature of sampling')
cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU')
cmd:option('-opencl',0,'use OpenCL (instead of CUDA)')
cmd:option('-verbose',1,'set to 0 to ONLY print the sampled text, no diagnostics')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
-- gated print: simple utility function wrapping a print
function gprint(str)
if opt.verbose == 1 then print(str) end
end
-- check that cunn/cutorch are installed if user wants to use the GPU
if opt.gpuid >= 0 and opt.opencl == 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then gprint('package cunn not found!') end
if not ok2 then gprint('package cutorch not found!') end
if ok and ok2 then
gprint('using CUDA on GPU ' .. opt.gpuid .. '...')
gprint('Make sure that your saved checkpoint was also trained with GPU. If it was trained with CPU use -gpuid -1 for sampling as well')
cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
cutorch.manualSeed(opt.seed)
else
gprint('Falling back on CPU mode')
opt.gpuid = -1 -- overwrite user setting
end
end
-- check that clnn/cltorch are installed if user wants to use OpenCL
if opt.gpuid >= 0 and opt.opencl == 1 then
local ok, cunn = pcall(require, 'clnn')
local ok2, cutorch = pcall(require, 'cltorch')
if not ok then print('package clnn not found!') end
if not ok2 then print('package cltorch not found!') end
if ok and ok2 then
gprint('using OpenCL on GPU ' .. opt.gpuid .. '...')
gprint('Make sure that your saved checkpoint was also trained with GPU. If it was trained with CPU use -gpuid -1 for sampling as well')
cltorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
torch.manualSeed(opt.seed)
else
gprint('Falling back on CPU mode')
opt.gpuid = -1 -- overwrite user setting
end
end
torch.manualSeed(opt.seed)
-- load the model checkpoint
if not lfs.attributes(opt.model, 'mode') then
gprint('Error: File ' .. opt.model .. ' does not exist. Are you sure you didn\'t forget to prepend cv/ ?')
end
checkpoint = torch.load(opt.model)
protos = checkpoint.protos
protos.rnn:evaluate() -- put in eval mode so that dropout works properly
-- initialize the vocabulary (and its inverted version)
local vocab = checkpoint.vocab
local ivocab = {}
for c,i in pairs(vocab) do ivocab[i] = c end
-- initialize the rnn state to all zeros
gprint('creating an ' .. checkpoint.opt.model .. '...')
local current_state
current_state = {}
for L = 1,checkpoint.opt.num_layers do
-- c and h for all layers
local h_init = torch.zeros(1, checkpoint.opt.rnn_size):double()
if opt.gpuid >= 0 and opt.opencl == 0 then h_init = h_init:cuda() end
if opt.gpuid >= 0 and opt.opencl == 1 then h_init = h_init:cl() end
table.insert(current_state, h_init:clone())
if checkpoint.opt.model == 'lstm' then
table.insert(current_state, h_init:clone())
end
end
state_size = #current_state
-- do a few seeded timesteps
local seed_text = opt.primetext
if string.len(seed_text) > 0 then
gprint('seeding with ' .. seed_text)
gprint('--------------------------')
for c in seed_text:gmatch'.' do
prev_char = torch.Tensor{vocab[c]}
io.write(ivocab[prev_char[1]])
if opt.gpuid >= 0 and opt.opencl == 0 then prev_char = prev_char:cuda() end
if opt.gpuid >= 0 and opt.opencl == 1 then prev_char = prev_char:cl() end
local lst = protos.rnn:forward{prev_char, unpack(current_state)}
-- lst is a list of [state1,state2,..stateN,output]. We want everything but last piece
current_state = {}
for i=1,state_size do table.insert(current_state, lst[i]) end
prediction = lst[#lst] -- last element holds the log probabilities
end
else
-- fill with uniform probabilities over characters (? hmm)
gprint('missing seed text, using uniform probability over first character')
gprint('--------------------------')
prediction = torch.Tensor(1, #ivocab):fill(1)/(#ivocab)
if opt.gpuid >= 0 and opt.opencl == 0 then prediction = prediction:cuda() end
if opt.gpuid >= 0 and opt.opencl == 1 then prediction = prediction:cl() end
end
-- start sampling/argmaxing
for i=1, opt.length do
-- log probabilities from the previous timestep
if opt.sample == 0 then
-- use argmax
local _, prev_char_ = prediction:max(2)
prev_char = prev_char_:resize(1)
else
-- use sampling
prediction:div(opt.temperature) -- scale by temperature
local probs = torch.exp(prediction):squeeze()
probs:div(torch.sum(probs)) -- renormalize so probs sum to one
prev_char = torch.multinomial(probs:float(), 1):resize(1):float()
end
-- forward the rnn for next character
local lst = protos.rnn:forward{prev_char, unpack(current_state)}
current_state = {}
for i=1,state_size do table.insert(current_state, lst[i]) end
prediction = lst[#lst] -- last element holds the log probabilities
io.write(ivocab[prev_char[1]])
end
io.write('\n') io.flush()