-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentazione.Rmd
458 lines (352 loc) · 11.5 KB
/
presentazione.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
---
title: "Analisi sul Dataset dei Pokémon"
author: "Massimiliano Baldo"
date: "2/09/2020"
output:
slidy_presentation:
incremental: yes
fig_caption: false
css: style.css
editor_options:
chunk_output_type: inline
---
```{r setup, echo= FALSE}
knitr::opts_chunk$set(cache = FALSE, message = FALSE, warning = FALSE, echo = FALSE)
```
## Introduzione ai Pokémon
> "Cosa faccio io? Conduco delle ricerche in modo che possiamo imparare di più sui Pokémon...
> Sono sicuro che lungo il percorso scoprirai molte cose, forse anche qualcosa di te stesso."
>
> `r tufte::quote_footer('--- Prof. Rowan')`
<div align="center"> <img src="./img/logo.png" width="55%" /> </div>
## Cosa analizzeremo?
- Qual è il tipo più forte nel complesso? Qual è il più debole?
- Qual è il doppio tipo esistente nel complesso il più forte? Qual è il più debole?
- Qual è il tipo più probabile che sia un Pokémon leggendario?
- Come si correla l'altezza e il peso di un Pokémon con le sue varie statistiche di base?
- Si può costruire un dream team Pokémon?<br>Una squadra di 6 Pokémon che rimane relativamente impenetrabile a qualsiasi altra squadra di 6 Pokémon.
---
## Qual è il tipo più forte nel complesso?<br>Qual è il più debole?
![Lista-Tipi](./img/lista_tipi.png){.centered width="50%"}
---
![Danni-Tipi](./img/danni_tipi.png){.centered width="45%"}
---
```{r include=FALSE}
library(readr)
library(dplyr)
library(tidyr)
library(ggplot2)
library(modelr)
library(ggpubr)
library(knitr)
library(kableExtra)
library(viridisLite)
library(DiagrammeR)
## Set completo dei dati sui Pokémon
set <- read.csv("./sets/Pokedex_Ver3.csv")
## Set con le debolezze dei Pokémon
aux_set <- read.csv("./sets/dataset_pokemon.csv")
set <- set %>%
filter(GENERATION <= 7)
```
```{r out.extra='class="centered"', fig.width=10}
weak_table <- aux_set %>%
select(type1, type2, contains("against")) %>%
filter(type2 == "") %>%
distinct() %>% ## make only one type for row because are identicaly
select(-type2) %>%
rename(type = type1)
sum <- weak_table %>%
select(-type) %>%
rowSums()
weak_table <- weak_table %>%
select(-contains("against")) %>%
mutate(sum = sum) %>%
arrange(sum) %>%
mutate(type=factor(type, levels=type)) %>%
rename(
Type = type,
"Weak Point" = sum
)
cols_min <- c("bug"="#A8B820",
"dark"="#705848",
"dragon"="#7038F8",
"electric"="#F8D030",
"fairy"="#EE99AC",
"fighting"="#C03028",
"fire"="#F08030",
"flying"="#A890F0",
"ghost"="#705898",
"grass"="#78C850",
"ground"="#E0C068",
"ice"="#98D8D8",
"normal"="#A8A878",
"poison"="#A040A0",
"psychic"="#F85888",
"rock"="#B8A038",
"steel"="#B8B8D0",
"water"="#6890F0")
ggplot(weak_table) +
geom_col(mapping = aes(Type, `Weak Point`, fill=Type)) +
scale_fill_manual(values = cols_min) +
xlab("") + ylab("") +
theme(
plot.title = element_text(hjust=0.5, margin = margin(20,0,20,0)),
legend.position = "none"
) +
ggtitle("Somma dei Moltiplicatori di Danno")
```
## Qual è il doppio tipo esistente nel complesso il più forte?<br>Qual è il più debole?
```{r results = 'asis'}
double_weak_table <- aux_set %>%
select(type1, type2, contains("against")) %>%
filter(type2 != "") %>%
distinct()
sum <- double_weak_table %>%
select(-contains("type")) %>%
rowSums()
double_weak_table <- double_weak_table %>%
select(-contains("against")) %>%
mutate(sum = sum) %>%
arrange(sum) %>%
rename(
"Type 1" = type1,
"Type 2" = type2,
"Weak Point" = sum
)
knitr::kables(
list(
knitr::kable(head(double_weak_table), align = "c") %>%
kable_paper(full_width = T),
knitr::kable(slice_tail(double_weak_table, n = 6), align = "c") %>%
kable_paper(full_width = T)
),
)
```
## Qual è il tipo più probabile che sia un Pokémon leggendario?
```{r fig.width=10, out.extra='class="centered"'}
legendary <- set %>%
select(NAME, TYPE1, TYPE2, LEGENDARY) %>%
filter(LEGENDARY == TRUE) %>%
distinct() ## necessario poichè alucni pokemon come Deoxsy cambiano forma ma non tipo
t1 <- as.data.frame(table(legendary$TYPE1))
t2 <- as.data.frame(table(legendary$TYPE2, exclude = ""))
# Il full join serve perchè si ha due tabelle distinte e vogliamo vedere i valori accoppiati,
# così da poterli sommare
legendary_type_sum <- full_join(t1, t2, by = "Var1") %>%
select(-Var1) %>%
rowSums()
legendary_type <- t1 %>%
rename(Type = Var1) %>%
select(-Freq) %>%
mutate(Freq = legendary_type_sum) %>%
arrange(Freq) %>%
mutate(Type=factor(Type, levels=Type))
cols_max <- c("Bug"="#A8B820",
"Dark"="#705848",
"Dragon"="#7038F8",
"Electric"="#F8D030",
"Fairy"="#EE99AC",
"Fighting"="#C03028",
"Fire"="#F08030",
"Flying"="#A890F0",
"Ghost"="#705898",
"Grass"="#78C850",
"Ground"="#E0C068",
"Ice"="#98D8D8",
"Normal"="#A8A878",
"Poison"="#A040A0",
"Psychic"="#F85888",
"Rock"="#B8A038",
"Steel"="#B8B8D0",
"Water"="#6890F0")
ggplot(na.omit(legendary_type), aes(x=Type, y=Freq, size=Freq, color=Type)) +
geom_segment(aes(x=Type, xend=Type, y=0, yend=Freq, size=1), color="grey") +
geom_point() +
scale_colour_manual(values = cols_max) +
theme_light() +
theme(
panel.grid.major.x = element_blank(),
panel.border = element_blank(),
axis.ticks.x = element_blank(),
plot.title.position = "plot",
plot.title = element_text(hjust=0.5, margin = margin(20,0,20,0)),
legend.position = "none"
) +
scale_size(range = c(1, 7)) +
ggtitle("Frequenza dei Tipi nei Pokèmon Leggendari") +
xlab("") + ylab("")
```
## Come si correla l'altezza e il peso di un Pokémon con le sue varie statistiche di base?
!["Evoluzione"](./img/Untitled Diagram.svg){.centered}
## Correlazione Lineare
```{r out.extra='class="centered"', fig.width=10}
library(corrplot)
par(mfrow=c(2,1))
# Correlazione tra altezza e gli stati
corrplot(cor(set$HEIGHT, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Altezza",
mar = c(1, 1, 1, 1)
)
# Correlazione tra peso e gli stati
corrplot(cor(set$WEIGHT, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Peso",
mar = c(1, 1, 1, 1)
)
```
## Correlazione Quadratica
```{r out.extra='class="centered"',fig.width=10}
quad_height <- set[, c(14)] ^ 2
quad_weight <- set[, c(15)] ^ 2
par(mfrow=c(2,1))
corrplot(cor(quad_height, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Altezza",
mar = c(1, 1, 1, 1)
)
corrplot(cor(quad_weight, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Peso",
mar = c(1, 1, 1, 1)
)
```
## Correlazione Logaritmica
```{r out.extra='class="centered"',fig.width=10}
log_height <- set[, c(14)] %>% log()
log_weight <- set[, c(15)] %>% log()
par(mfrow=c(2,1))
corrplot(cor(log_height, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Altezza",
mar = c(1, 1, 1, 1)
)
corrplot(cor(log_weight, set[, c(16:21)]),
method = "number",
type = "upper",
title = "Peso",
mar = c(1, 1, 1, 1)
)
```
---
```{r out.extra='class="centered"',fig.width=15}
height_plot <- ggplot(data = set, mapping = aes(log_height, ATK)) +
geom_point() +
geom_smooth(method = "loess", formula = "y ~ x") +
xlab("Log Height") + ylab("Atk")
weight_plot <- ggplot(data = set, mapping = aes(log_weight, ATK)) +
geom_point() +
geom_smooth(method = "loess", formula = "y ~ x") +
xlab("Log Weight") + ylab("Atk")
ggarrange(height_plot, weight_plot, ncol = 2, nrow = 1, align = "h")
```
## Si può costruire un dream team Pokémon?<br>Una squadra di 6 Pokémon che rimane relativamente impenetrabile a qualsiasi altra squadra di 6 Pokémon.
> "L'ultimo passo è di gran lunga il più difficile.
> Anche se è vero che ci sono dei set di mosse "standard" per ogni Pokémon,
> il più difficile è far lavorare tutti insieme i tuoi Pokémon,
> non solo per trovare le mosse giuste per il tuo Pokémon."
## Il meno vulnerabile
```{r}
best_candidates <- aux_set %>%
select(name, contains("against"))
best_candidates <- best_candidates %>%
filter(rowSums(best_candidates == 0) > 0)
best_candidates <- best_candidates %>%
rowwise() %>%
mutate(Sum = sum(c_across("against_bug":"against_water"))) %>%
arrange(Sum)
dream_team <- head(best_candidates, 1)
knitr::kable(dream_team %>% select(-name, -Sum), col.names = gsub("against_", "", names(dream_team %>% select(-name, -Sum))), align = "c") %>%
kable_paper(bootstrap_options = "striped", full_width = F)
```
![Mawile](./img/mawile.png){.dream_team}
## Nuovo Membro
```{r}
new_member <- best_candidates %>%
filter(against_ground == 0) %>%
arrange(Sum) %>%
head(1)
dream_team <- rbind(dream_team, new_member)
knitr::kable(dream_team %>% select(-name, -Sum), col.names = gsub("against_", "", names(dream_team %>% select(-name, -Sum))), align = "c") %>%
kable_paper(bootstrap_options = "striped", full_width = F)
```
![Mawile](./img/mawile.png){.dream_team style="left: 30%;"}
![Skarmory](./img/skarmory.png){.dream_team style="left: 70%;"}
## Team finale
```{r}
new_member <- best_candidates %>%
filter(against_fire == 0.5) %>%
arrange(Sum) %>%
head(1)
dream_team <- rbind(dream_team, new_member)
new_member <- best_candidates %>%
filter(against_electric == 0) %>%
arrange(Sum) %>%
head(1)
dream_team <- rbind(dream_team, new_member)
new_member <- best_candidates %>%
filter(against_fight == 0) %>%
arrange(Sum) %>%
head(1)
dream_team <- rbind(dream_team, new_member)
new_member <- best_candidates %>%
filter(against_water == 0.5) %>%
arrange(Sum) %>%
head(2) ## Sarebbe Dialga, però considerare pokemon leggendari nella ricerca non è funzionale al fine di tale, pertanto usaimo il secondo che è anche uno starter
dream_team <- rbind(dream_team, new_member[2, ])
dream_team[3,] <-best_candidates %>%
filter(name == "Azumarill")
dream_team[5,] <-best_candidates %>%
filter(name == "Aegislash")
final_team <- aux_set %>%
filter(name %in% dream_team$name) %>%
select(name, type1, type2, hp, attack, defense, speed, sp_attack, sp_defense)
final_team[1,] <-aux_set %>%
select(name, type1, type2, hp, attack, defense, speed, sp_attack, sp_defense) %>%
filter(name == "Azumarill")
final_team[6,] <-aux_set %>%
select(name, type1, type2, hp, attack, defense, speed, sp_attack, sp_defense) %>%
filter(name == "Aegislash")
df_image <- data.frame(
c0 = c("1", "2"),
c1 = "",
c2 = "",
c3 = ""
)
knitr::kable(final_team, align = "c") %>%
kable_paper(bootstrap_options = "striped", full_width = F)
```
```{r}
knitr::kable(df_image %>% select(-c0),
align = "c",
col.names = NULL,
table.attr = "class=\"kable_wrapper\" style=\"top: 75%;\"") %>%
column_spec(1, image = spec_image(c("./img/azumarill.png", "./img/steelix.png"), 475, 475)) %>%
column_spec(2, image = spec_image(c("./img/skarmory.png", "./img/mawile.png"), 475, 475)) %>%
column_spec(3, image = spec_image(c("./img/empoleon.png", "./img/aegislash.png"), 475, 475))
```
## È effetivamente un dream team?
```{r fig.width=10, out.extra='class="centered"'}
library(plyr)
dream_team %>%
select(-name) %>%
ldply(function(c) sum(c==2)) %>%
filter(V1 >= 1) %>%
ggplot( aes(x=.id, y=V1, fill= V1)) +
geom_bar(stat="identity") +
labs(fill = "Intensity") +
xlab("") + ylab("")
```
## Bibliografia
* Kaggle
- [Dataset con i Moltiplicatori di Danno](https://www.kaggle.com/rounakbanik/pokemon)
- [Dataset Completo](https://www.kaggle.com/takamasakato/pokemon-all-status-data)
* [Pokèdex](https://www.pokemon.com/it/pokedex/)
* [Wikipedia](https://wiki.pokemoncentral.it/)
* [Squadra Competitiva](https://strategywiki.org/wiki/Pok%C3%A9mon/Competitive_battling/Making_a_Team)