-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_embedding.py
80 lines (65 loc) · 3.46 KB
/
eval_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pda
import torch
from chengyubert.data import chengyu_process
from chengyubert.data.embeddings import load_embeddings, read_vectors
from chengyubert.data.evaluation import evaluate_embeddings
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--corpus",
default='Literature', type=str,
help="json file for model architecture")
parser.add_argument("--subtype",
default='literature', type=str,
help="json file for model architecture")
parser.add_argument("--model_path",
default=None, type=str,
help="json file for model architecture")
args = parser.parse_args()
chengyu_vocab = chengyu_process(annotation_dir='./data/annotations')
# synonyms, filtered, antonyms = construct_synonyms_paper(annotations_dir='./data/annotations')
df_synonyms = pda.read_csv('./data/annotations/synonyms/idiom_synonyms.tsv', sep='\t')
df_antonyms = pda.read_csv('./data/annotations/synonyms/idiom_antonyms.tsv', sep='\t')
df_synonyms = df_synonyms[
(df_synonyms.query_id < len(chengyu_vocab)) & (df_synonyms.synonym_id < len(chengyu_vocab))]
df_antonyms = df_antonyms[
(df_antonyms.query_id < len(chengyu_vocab)) & (df_antonyms.antonym_id < len(chengyu_vocab))]
chengyu_synonyms = {}
for item in df_synonyms.itertuples():
key = '>=2' if item.overlapping > 1 else '<=1'
chengyu_synonyms.setdefault(key, {})
query = getattr(item, 'query')
chengyu_synonyms[key].setdefault(query, [])
chengyu_synonyms[key][query].append(item.synonym)
chengyu_antonyms = {}
for item in df_antonyms.itertuples():
key = '>=2' if item.overlapping > 1 else '<=1'
chengyu_antonyms.setdefault(key, {})
query = getattr(item, 'query')
chengyu_antonyms[key].setdefault(query, [])
chengyu_antonyms[key][query].append(item.antonym)
emb_path = "./data/pretrained/Chinese-Word-Vectors/embeddings"
_, iw, wi, dim = read_vectors(f'{emb_path}/{args.corpus}/sgns.{args.subtype}.word.bz2')
if args.model_path is None:
for t in ['word', 'char', 'bigram', 'bigram-char', 'BERT', 'ERNIE']:
embeddings = load_embeddings(chengyu_vocab, emb_path, t, wi)
i2w = [k for k in embeddings if k in chengyu_vocab]
w2i = {w: i for i, w in enumerate(i2w)}
vectors_np = np.array([embeddings[i2w[i]] for i in range(len(i2w))])
cached = {}
for k in chengyu_synonyms:
print(f'==========================={t}-{k}===============================')
evaluate_embeddings(i2w, w2i, vectors_np, chengyu_synonyms[k], chengyu_antonyms[k], cached)
else:
model = torch.load(args.model_path)
embeddings_np = model['idiom_embedding.weight'].cpu().numpy()
embeddings = {k: embeddings_np[v] for k, v in chengyu_vocab.items() if k in wi}
i2w = [k for k in embeddings if k in chengyu_vocab]
w2i = {w: i for i, w in enumerate(i2w)}
vectors = np.array([embeddings[i2w[i]] for i in range(len(i2w))])
cached = {}
for k in chengyu_synonyms:
print(f'==========================={k}===============================')
evaluate_embeddings(i2w, w2i, vectors, chengyu_synonyms[k], chengyu_antonyms[k], cached)