-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_affection.py
861 lines (745 loc) · 39.2 KB
/
train_affection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
"""
Copyright (c) VisualJoyce.
Licensed under the MIT license.
"""
import argparse
import glob
import os
import re
import shutil
from collections import Counter
from os.path import exists, join
from pprint import pprint
from time import time
import numpy as np
import pandas as pd
import torch
from horovod import torch as hvd
# from apex import amp
from nltk import Tree
from torch.cuda.amp import autocast, GradScaler
from torch.nn import functional as F
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from chengyubert.data import create_dataloaders, calo_inverse_mapping, intermediate_dir, idioms_inverse_mapping
from chengyubert.data.dataset import DATA_REGISTRY
from chengyubert.data.evaluation import judge
from chengyubert.models import build_model
from chengyubert.optim import get_lr_sched
from chengyubert.optim.misc import build_optimizer
from chengyubert.utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
broadcast_tensors)
from chengyubert.utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
from chengyubert.utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
from chengyubert.utils.save import ModelSaver, save_training_meta
from chengyubert.utils.tree import TreePrettyPrinter
def train(model, dataloaders, opts):
# make sure every process has same model parameters in the beginning
broadcast_tensors([p.data for p in model.parameters()], 0)
set_dropout(model, opts.dropout)
# Prepare optimizer
optimizer = build_optimizer(model, opts)
scaler = GradScaler()
global_step = 0
if opts.rank == 0:
save_training_meta(opts)
TB_LOGGER.create(join(opts.output_dir, 'log'))
pbar = tqdm(total=opts.num_train_steps, desc=opts.model)
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
os.makedirs(join(opts.output_dir, 'results'), exist_ok=True) # store val predictions
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
else:
LOGGER.disabled = True
pbar = NoOp()
model_saver = NoOp()
LOGGER.info(f"***** Running training with {opts.n_gpu} GPUs *****")
LOGGER.info(" Num examples = %d", len(dataloaders['train'].dataset))
LOGGER.info(" Batch size = %d", opts.train_batch_size)
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
LOGGER.info(" Num steps = %d", opts.num_train_steps)
running_loss = RunningMeter('loss')
model.train()
n_examples = 0
n_epoch = 0
best_ckpt = 0
best_eval = 0
start = time()
# quick hack for amp delay_unscale bug
optimizer.zero_grad()
optimizer.step()
while True:
for step, batch in enumerate(dataloaders['train']):
targets = batch['targets']
n_examples += targets.size(0)
with autocast():
(_, over_loss,
select_masks,
# coarse_emotion_loss,
losses) = model(**batch, compute_loss=True)
if over_loss is not None:
if opts.project == 'calo':
fine_emotion_loss, sentiment_emotion_loss = losses
loss = (over_loss + fine_emotion_loss + sentiment_emotion_loss).mean()
else:
sentiment_emotion_loss = losses
loss = (over_loss + sentiment_emotion_loss).mean()
else:
if opts.project == 'calo':
fine_emotion_loss, sentiment_emotion_loss = losses
loss = (fine_emotion_loss + sentiment_emotion_loss).mean()
else:
sentiment_emotion_loss = losses
loss = sentiment_emotion_loss.mean()
delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0
scaler.scale(loss).backward()
if not delay_unscale:
# gather gradients from every processes
# do this before unscaling to make sure every process uses
# the same gradient scale
grads = [p.grad.data for p in model.parameters()
if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
running_loss(loss.item())
if (step + 1) % opts.gradient_accumulation_steps == 0:
global_step += 1
# learning rate scheduling
lr_this_step = get_lr_sched(global_step, opts)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
# log loss
losses = all_gather_list(running_loss)
running_loss = RunningMeter(
'loss', sum(l.val for l in losses) / len(losses))
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
TB_LOGGER.step()
# update model params
if opts.grad_norm != -1:
# Unscales the gradients of optimizer's assigned params in-place
scaler.unscale_(optimizer)
grad_norm = clip_grad_norm_(model.parameters(), opts.grad_norm)
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
# scaler.step() first unscales gradients of the optimizer's params.
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
# otherwise, optimizer.step() is skipped.
scaler.step(optimizer)
# Updates the scale for next iteration.
scaler.update()
optimizer.zero_grad()
pbar.update(1)
if global_step % 100 == 0:
# monitor training throughput
tot_ex = sum(all_gather_list(n_examples))
ex_per_sec = int(tot_ex / (time() - start))
LOGGER.info(f'{opts.model}: {n_epoch}-{global_step}: '
f'{tot_ex} examples trained at '
f'{ex_per_sec} ex/s \n'
f'over loss: {over_loss.mean() if over_loss is not None else over_loss} \n'
# f'coarse emotion loss: {coarse_emotion_loss.mean()} \n'
# f'fine emotion loss: {fine_emotion_loss.mean()} \n'
# f'sentiment loss: {sentiment_emotion_loss.mean()} \n'
f'best_acc-{best_eval * 100:.2f}')
TB_LOGGER.add_scalar('perf/ex_per_s',
ex_per_sec, global_step)
if global_step % opts.valid_steps == 0:
log = evaluation(model,
dict(filter(lambda x: x[0].startswith('val'), dataloaders.items())),
opts, global_step)
if log and log['val/acc'] > best_eval:
best_ckpt = global_step
best_eval = log['val/acc']
pbar.set_description(f'{opts.model}: {n_epoch}-{best_ckpt} best_acc-{best_eval * 100:.2f}')
model_saver.save(model, global_step)
if global_step >= opts.num_train_steps:
break
if global_step >= opts.num_train_steps or global_step - best_ckpt > 0.3 * opts.num_train_steps:
break
n_epoch += 1
LOGGER.info(f"Step {global_step}: finished {n_epoch} epochs")
return best_ckpt
def idiom2tree(idiom, select_masks):
# ans = list(idiom)
ans = idiom
for k, select_mask in enumerate(select_masks):
for idx, v in enumerate(select_mask):
if v == 1:
c0 = ans.pop(idx)
if isinstance(c0, Tree):
c0_label = c0.label()
else:
c0_label = c0
c1 = ans.pop(idx)
if isinstance(c1, Tree):
c1_label = c1.label()
else:
c1_label = c1
ans.insert(idx, Tree(c0_label + c1_label, (c0, c1)))
else:
c = ans.pop(idx)
if isinstance(c, Tree):
c_label = c.label()
else:
c_label = c
ans.insert(idx, Tree(c_label, (c,)))
assert len(ans) == 2
return ans
@torch.no_grad()
def validate_calo(opts, model, val_loader, split, global_step):
val_loss = 0
fine_emotion_score = 0
sentiment_score = 0
n_ex = 0
val_mrr = 0
st = time()
results = []
def get_header(key):
d = calo_inverse_mapping[key]
return [f'{key}_{d[v]}_{v}' if isinstance(d[v], str) else f'{key}_{d[v][-1]}_{v}' for v in range(len(d))]
affection_results = []
with tqdm(range(len(val_loader.dataset) // opts.size), desc=f'{split}-{opts.rank}') as tq:
for i, batch in enumerate(val_loader):
qids = batch['qids']
targets = batch['targets']
del batch['targets']
del batch['qids']
# select_masks, atts, composition_gates = composition
if batch['input_ids'].dim() == 3:
input_ids = torch.gather(batch['input_ids'][1], dim=1, index=batch['gather_index'][0])
else:
input_ids = torch.gather(batch['input_ids'], dim=1, index=batch['gather_index'])
_, over_logits, select_masks, (fine_emotion_logits, sentiment_logits) = model(
**batch, targets=None, compute_loss=False)
idiom_targets = targets[:, 0]
coarse_emotion_targets = targets[:, 1]
fine_emotion_targets = targets[:, 2]
sentiment_targets = targets[:, 3]
fine_emotion_score += (
fine_emotion_logits.max(dim=-1, keepdim=False)[1] == fine_emotion_targets).sum().item()
sentiment_score += (
sentiment_logits.max(dim=-1, keepdim=False)[1] == sentiment_targets).sum().item()
if over_logits is not None:
loss = F.cross_entropy(over_logits, idiom_targets, reduction='sum')
val_loss += loss.item()
# tot_score += (scores.max(dim=-1, keepdim=False)[1] == idiom_targets).sum().item()
max_prob, max_idx = over_logits.max(dim=-1, keepdim=False)
options = [val_loader.dataset.id2idiom[o] for o in val_loader.dataset.enlarged_candidates]
for j, (qid, inp, position, answer) in enumerate(zip(qids,
# idiom_targets,
input_ids,
# batch['option_ids'],
batch['positions'],
max_idx)):
# g = over_logits[j].cpu().numpy()
# top_k = np.argsort(-g)
# val_mrr += 1 / (1 + np.argwhere(top_k == target.item()).item())
example = val_loader.dataset.db[qid]
idiom = val_loader.dataset.id2idiom[example['idiom']]
# idiom = options[target.item()]
affection_results.append(
[idiom] + fine_emotion_logits[
j].cpu().numpy().tolist() + sentiment_logits[j].cpu().numpy().tolist()
)
if i % 1000 == 0 and select_masks is not None:
g = over_logits[j].cpu().numpy()
top_k = np.argsort(-g)[:5]
print(qid,
[options[k] for k in top_k],
idiom)
# print(len(select_masks), atts.size())
s_masks = [select_mask[j].long().cpu().numpy().tolist() for select_mask in select_masks]
# s_att = atts[j].cpu().numpy().tolist()
# tokens = val_loader.dataset.tokenizer.convert_ids_to_tokens(inp)
# start = tokens.index(val_loader.dataset.tokenizer.mask_token)
# tokens[position:position + len(idiom)] = list(idiom)
tokens = list(idiom)
# print(tokens, s_masks, s_att, composition_gates[j].sum())
print(tokens, s_masks)
try:
tree = Tree(' '.join(tokens), idiom2tree(tokens, s_masks))
print(TreePrettyPrinter(tree).text(unicodelines=True))
except:
pass
predictions = {
# "coarse emotion": {
# "target": calo_inverse_mapping['coarse_emotion'].get(coarse_emotion_targets[j].item(),
# '无'),
# "predictions": {calo_inverse_mapping['coarse_emotion'][k]: v for k, v in
# enumerate(coarse_emotion_logits[j].cpu().numpy().tolist())}
# },
"fine emotion": {
"target": calo_inverse_mapping['fine_emotion'].get(fine_emotion_targets[j].item(), '无'),
"predictions": {calo_inverse_mapping['fine_emotion'][k]: v for k, v in
enumerate(fine_emotion_logits[j].cpu().numpy().tolist())}
},
"sentiment": {
"target": calo_inverse_mapping['sentiment'].get(sentiment_targets[j].item(), '无'),
"predictions": {calo_inverse_mapping['sentiment'][k]: v for k, v in
enumerate(sentiment_logits[j].cpu().numpy().tolist())}
}
}
pprint(predictions)
answers = max_idx.cpu().tolist()
results.extend(zip(qids, answers))
else:
for j, (qid, inp, position) in enumerate(zip(qids, input_ids,
# batch['option_ids'],
batch['positions'],
)):
# options = [val_loader.dataset.id2idiom[o.item()] for o in option_ids]
example = val_loader.dataset.db[qid]
idiom = val_loader.dataset.id2idiom[example['idiom']]
affection_results.append(
[idiom] + fine_emotion_logits[
j].cpu().numpy().tolist() + sentiment_logits[j].cpu().numpy().tolist()
)
if i % 1000 == 0 and select_masks is not None:
print(qid,
idiom)
s_masks = [select_mask[j].long().cpu().numpy().tolist() for select_mask in select_masks]
tokens = list(idiom)
# print(tokens, s_masks, s_att, composition_gates[j].sum())
print(tokens, s_masks)
try:
tree = Tree(' '.join(tokens), idiom2tree(tokens, s_masks))
print(TreePrettyPrinter(tree).text(unicodelines=True))
except:
pass
predictions = {
# "coarse emotion": {
# "target": calo_inverse_mapping['coarse_emotion'].get(coarse_emotion_targets[j].item(),
# '无'),
# "predictions": {calo_inverse_mapping['coarse_emotion'][k]: v for k, v in
# enumerate(coarse_emotion_logits[j].cpu().numpy().tolist())}
# },
"fine emotion": {
"target": calo_inverse_mapping['fine_emotion'].get(fine_emotion_targets[j].item(), '无'),
"predictions": {calo_inverse_mapping['fine_emotion'][k]: v for k, v in
enumerate(fine_emotion_logits[j].cpu().numpy().tolist())}
},
"sentiment": {
"target": calo_inverse_mapping['sentiment'].get(sentiment_targets[j].item(), '无'),
"predictions": {calo_inverse_mapping['sentiment'][k]: v for k, v in
enumerate(sentiment_logits[j].cpu().numpy().tolist())}
}
}
pprint(predictions)
n_ex += len(qids)
tq.update(len(qids))
if results:
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}_rank{opts.rank}.csv'
with open(out_file, 'w') as f:
for id_, ans in results:
f.write(f'{id_},{ans}\n')
header = ['idiom'] + get_header('fine_emotion') + get_header('sentiment')
if affection_results:
out_file = f'{opts.output_dir}/results/{split}_affection_results_{global_step}_rank{opts.rank}.csv'
pd.DataFrame(affection_results, columns=header).to_csv(out_file)
val_loss = sum(all_gather_list(val_loss))
val_mrr = sum(all_gather_list(val_mrr))
# val_coarse_emotion_score = sum(all_gather_list(coarse_emotion_score))
val_fine_emotion_score = sum(all_gather_list(fine_emotion_score))
val_sentiment_score = sum(all_gather_list(sentiment_score))
n_ex = sum(all_gather_list(n_ex))
tot_time = time() - st
val_loss /= n_ex
val_mrr = val_mrr / n_ex
# val_coarse_emotion_score = val_coarse_emotion_score / n_ex
val_fine_emotion_score = val_fine_emotion_score / n_ex
val_sentiment_score = val_sentiment_score / n_ex
if results:
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}.csv'
if not os.path.isfile(out_file):
with open(out_file, 'wb') as g:
for f in glob.glob(f'{opts.output_dir}/results/{split}_results_{global_step}_rank*.csv'):
shutil.copyfileobj(open(f, 'rb'), g)
sum(all_gather_list(opts.rank))
txt_db = os.path.join('/txt',
intermediate_dir(opts.pretrained_model_name_or_path),
getattr(opts, f'{split}_txt_db'))
val_acc = judge(out_file, f'{txt_db}/answer.csv')
if opts.rank == 0:
results_files = glob.glob(f'{opts.output_dir}/results/{split}_affection_results_{global_step}_rank*.csv')
new_affection_results_df = pd.concat(map(pd.read_csv, results_files))
idiom_num = new_affection_results_df['idiom'].unique().size
idiom_wise_accs = {}
for item in new_affection_results_df.groupby('idiom').mean().reset_index().to_dict(orient='records'):
idiom = item['idiom']
idiom_id = val_loader.dataset.chengyu_vocab[idiom]
affections = val_loader.dataset.calo_vocab[idiom_id][0]
for sub_type in ['fine_emotion', 'sentiment']:
d = {k: v for k, v in item.items() if k.startswith(sub_type)}
key = max(d, key=d.get)
_, pred = key.rsplit('_', 1)
target = affections[sub_type]
idiom_wise_accs.setdefault(sub_type, 0)
idiom_wise_accs[sub_type] += (int(pred) == target) / idiom_num * 100
val_acc = (val_fine_emotion_score + val_sentiment_score) / 2
val_log = {f'{split}/loss': val_loss,
f'{split}/acc': val_acc,
f'{split}/fine_emotion': val_fine_emotion_score * 100,
f'{split}/sentiment': val_sentiment_score * 100,
f'{split}/mrr': val_mrr,
f'{split}/ex_per_s': n_ex / tot_time}
for k, v in idiom_wise_accs.items():
val_log[f'{split}/{k}'] = v
LOGGER.info(f"validation finished in {int(tot_time)} seconds, \n"
# f"coarse emotion score: {val_coarse_emotion_score * 100:.2f}, \n"
f"fine emotion score: {val_fine_emotion_score * 100:.2f}, \n"
f"sentiment score: {val_sentiment_score * 100:.2f}, \n"
f"score: {val_acc * 100:.2f}, \n"
f"idiom-wise score: {idiom_wise_accs}, "
f"mrr: {val_mrr:.3f}")
return val_log
@torch.no_grad()
def validate_slide(opts, model, val_loader, split, global_step):
val_loss = 0
sentiment_score = 0
n_ex = 0
val_mrr = 0
st = time()
results = []
def get_header(key):
d = idioms_inverse_mapping[key]
return [f'{key}_{d[v]}_{v}' if isinstance(d[v], str) else f'{key}_{d[v][-1]}_{v}' for v in range(len(d))]
affection_results = []
with tqdm(range(len(val_loader.dataset) // opts.size), desc=f'{split}-{opts.rank}') as tq:
for i, batch in enumerate(val_loader):
qids = batch['qids']
targets = batch['targets']
del batch['targets']
del batch['qids']
# select_masks, atts, composition_gates = composition
if batch['input_ids'].dim() == 3:
input_ids = torch.gather(batch['input_ids'][1], dim=1, index=batch['gather_index'][0])
else:
input_ids = torch.gather(batch['input_ids'], dim=1, index=batch['gather_index'])
_, over_logits, select_masks, sentiment_logits = model(
**batch, targets=None, compute_loss=False)
idiom_targets = targets[:, 0]
sentiment_targets = targets[:, 1]
sentiment_score += (
sentiment_logits.max(dim=-1, keepdim=False)[1] == sentiment_targets).sum().item()
if over_logits is not None:
loss = F.cross_entropy(over_logits, idiom_targets, reduction='sum')
val_loss += loss.item()
# tot_score += (scores.max(dim=-1, keepdim=False)[1] == idiom_targets).sum().item()
max_prob, max_idx = over_logits.max(dim=-1, keepdim=False)
options = [val_loader.dataset.id2idiom[o] for o in val_loader.dataset.enlarged_candidates]
for j, (qid, inp, position, answer) in enumerate(zip(qids,
# idiom_targets,
input_ids,
# batch['option_ids'],
batch['positions'],
max_idx)):
# g = over_logits[j].cpu().numpy()
# top_k = np.argsort(-g)
# val_mrr += 1 / (1 + np.argwhere(top_k == target.item()).item())
example = val_loader.dataset.db[qid]
idiom = val_loader.dataset.id2idiom[example['idiom']]
# idiom = options[target.item()]
affection_results.append(
[idiom] + sentiment_logits[j].cpu().numpy().tolist()
)
if i % 1000 == 0:
g = over_logits[j].cpu().numpy()
top_k = np.argsort(-g)[:5]
print(qid,
[options[k] for k in top_k],
idiom)
# print(len(select_masks), atts.size())
if select_masks is not None:
s_masks = [select_mask[j].long().cpu().numpy().tolist() for select_mask in select_masks]
# s_att = atts[j].cpu().numpy().tolist()
# tokens = val_loader.dataset.tokenizer.convert_ids_to_tokens(inp)
# start = tokens.index(val_loader.dataset.tokenizer.mask_token)
# tokens[position:position + len(idiom)] = list(idiom)
tokens = val_loader.dataset.tokenizer.convert_ids_to_tokens(
val_loader.dataset.idiom_input_ids[qid])
# print(tokens, s_masks, s_att, composition_gates[j].sum())
print(tokens, s_masks)
try:
tree = Tree(' '.join(tokens), idiom2tree(tokens, s_masks))
print(TreePrettyPrinter(tree).text(unicodelines=True))
except:
pass
predictions = {
# "coarse emotion": {
# "target": calo_inverse_mapping['coarse_emotion'].get(coarse_emotion_targets[j].item(),
# '无'),
# "predictions": {calo_inverse_mapping['coarse_emotion'][k]: v for k, v in
# enumerate(coarse_emotion_logits[j].cpu().numpy().tolist())}
# },
"sentiment": {
"target": idioms_inverse_mapping['sentiment'].get(sentiment_targets[j].item(), '无'),
"predictions": {idioms_inverse_mapping['sentiment'][k]: v for k, v in
enumerate(sentiment_logits[j].cpu().numpy().tolist())}
}
}
pprint(predictions)
answers = max_idx.cpu().tolist()
results.extend(zip(qids, answers))
else:
for j, (qid, inp, position) in enumerate(zip(qids, input_ids,
# batch['option_ids'],
batch['positions'],
)):
# options = [val_loader.dataset.id2idiom[o.item()] for o in option_ids]
example = val_loader.dataset.db[qid]
idiom = val_loader.dataset.id2idiom[example['idiom']]
affection_results.append(
[idiom] + sentiment_logits[j].cpu().numpy().tolist()
)
if i % 1000 == 0:
print(qid,
idiom)
if select_masks is not None:
s_masks = [select_mask[j].long().cpu().numpy().tolist() for select_mask in select_masks]
tokens = val_loader.dataset.tokenizer.convert_ids_to_tokens(
val_loader.dataset.idiom_input_ids[qid])
# print(tokens, s_masks, s_att, composition_gates[j].sum())
print(tokens, s_masks)
try:
tree = Tree(' '.join(tokens), idiom2tree(tokens, s_masks))
print(TreePrettyPrinter(tree).text(unicodelines=True))
except:
pass
predictions = {
"sentiment": {
"target": idioms_inverse_mapping['sentiment'].get(sentiment_targets[j].item(), '无'),
"predictions": {idioms_inverse_mapping['sentiment'][k]: v for k, v in
enumerate(sentiment_logits[j].cpu().numpy().tolist())}
}
}
pprint(predictions)
n_ex += len(qids)
tq.update(len(qids))
if results:
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}_rank{opts.rank}.csv'
with open(out_file, 'w') as f:
for id_, ans in results:
f.write(f'{id_},{ans}\n')
header = ['idiom'] + get_header('sentiment')
if affection_results:
out_file = f'{opts.output_dir}/results/{split}_affection_results_{global_step}_rank{opts.rank}.csv'
pd.DataFrame(affection_results, columns=header).to_csv(out_file)
val_loss = sum(all_gather_list(val_loss))
val_mrr = sum(all_gather_list(val_mrr))
val_sentiment_score = sum(all_gather_list(sentiment_score))
n_ex = sum(all_gather_list(n_ex))
tot_time = time() - st
val_loss /= n_ex
val_mrr = val_mrr / n_ex
val_sentiment_score = val_sentiment_score / n_ex
if results:
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}.csv'
if not os.path.isfile(out_file):
with open(out_file, 'wb') as g:
for f in glob.glob(f'{opts.output_dir}/results/{split}_results_{global_step}_rank*.csv'):
shutil.copyfileobj(open(f, 'rb'), g)
sum(all_gather_list(opts.rank))
txt_db = os.path.join('/txt',
intermediate_dir(opts.pretrained_model_name_or_path),
getattr(opts, f'{split}_txt_db'))
val_acc = judge(out_file, f'{txt_db}/answer.csv')
if opts.rank == 0:
results_files = glob.glob(f'{opts.output_dir}/results/{split}_affection_results_{global_step}_rank*.csv')
new_affection_results_df = pd.concat(map(pd.read_csv, results_files))
idiom_num = new_affection_results_df['idiom'].unique().size
idiom_wise_accs = {}
for item in new_affection_results_df.groupby('idiom').mean().reset_index().to_dict(orient='records'):
idiom = item['idiom']
idiom_id = val_loader.dataset.vocab[idiom]
for sub_type in ['sentiment']:
d = {k: v for k, v in item.items() if k.startswith(sub_type)}
key = max(d, key=d.get)
_, pred = key.rsplit('_', 1)
target = val_loader.dataset.sentiments[idiom_id]
idiom_wise_accs.setdefault(sub_type, 0)
idiom_wise_accs[sub_type] += (int(pred) == target) / idiom_num * 100
val_acc = val_sentiment_score
val_log = {f'{split}/loss': val_loss,
f'{split}/acc': val_acc,
f'{split}/sentiment': val_sentiment_score * 100,
f'{split}/mrr': val_mrr,
f'{split}/ex_per_s': n_ex / tot_time}
for k, v in idiom_wise_accs.items():
val_log[f'{split}/{k}'] = v
LOGGER.info(f"validation finished in {int(tot_time)} seconds, \n"
# f"coarse emotion score: {val_coarse_emotion_score * 100:.2f}, \n"
f"sentiment score: {val_sentiment_score * 100:.2f}, \n"
f"score: {val_acc * 100:.2f}, \n"
f"idiom-wise score: {idiom_wise_accs}, "
f"mrr: {val_mrr:.3f}")
return val_log
validate = {
'calo': validate_calo,
'slide': validate_slide
}
def evaluation(model, data_loaders: dict, opts, global_step):
model.eval()
log = {}
for split, loader in data_loaders.items():
LOGGER.info(f"Step {global_step}: start running "
f"validation on {split} split...")
log.update(validate[opts.project](opts, model, loader, split, global_step))
TB_LOGGER.log_scaler_dict(log)
model.train()
return log
def get_best_ckpt(val_data_dir, opts):
pat = re.compile(r'val_results_(?P<step>\d+)_rank0.csv')
prediction_files = glob.glob('{}/results/val_results_*_rank0.csv'.format(opts.output_dir))
top_files = Counter()
for f in prediction_files:
acc = judge(f, os.path.join(val_data_dir, 'answer.csv'))
top_files.update({f: acc})
print(top_files)
for f, acc in top_files.most_common(1):
m = pat.match(os.path.basename(f))
best_epoch = int(m.group('step'))
return best_epoch
def main(opts):
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
opts.rank = rank
opts.size = hvd.size()
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if opts.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
"should be >= 1".format(
opts.gradient_accumulation_steps))
set_random_seed(opts.seed)
# data loaders
DatasetCls = DATA_REGISTRY[opts.dataset_cls]
EvalDatasetCls = DATA_REGISTRY[opts.eval_dataset_cls]
opts.evaluate_embedding = False
splits, dataloaders = create_dataloaders(DatasetCls, EvalDatasetCls, opts)
if opts.project == 'calo':
setattr(opts, 'weights', (dataloaders['train'].dataset.fine_emotion_weights,
dataloaders['train'].dataset.sentiment_weights))
else:
setattr(opts, 'weights', dataloaders['train'].dataset.sentiment_weights)
# Prepare model
model = build_model(opts)
model.to(device)
if opts.project == 'calo':
w1, w2 = opts.weights
opts.weights = (w1.tolist(), w2.tolist())
else:
opts.weights = opts.weights.tolist()
if opts.mode == 'train':
best_ckpt = train(model, dataloaders, opts)
else:
best_ckpt = get_best_ckpt(dataloaders['val'].dataset.db_dir, opts)
best_pt = f'{opts.output_dir}/ckpt/model_step_{best_ckpt}.pt'
model.load_state_dict(torch.load(best_pt), strict=False)
evaluation(model, dict(filter(lambda x: x[0] != 'train', dataloaders.items())), opts, best_ckpt)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--compressed_db', action='store_true',
help='use compressed LMDB')
parser.add_argument("--model_config",
default=None, type=str,
help="json file for model architecture")
parser.add_argument("--checkpoint",
default=None, type=str,
help="pretrained model")
parser.add_argument("--model", default='paired',
choices=['snlive'],
help="choose from 2 model architecture")
parser.add_argument("--mode", default='train',
choices=['train', 'infer'],
help="choose from 2 mode")
parser.add_argument("--output_dir", default=None, type=str,
help="The output directory where the model checkpoints will be "
"written.")
# Prepro parameters
parser.add_argument('--max_txt_len', type=int, default=60,
help='max number of tokens in text (BERT BPE)')
# training parameters
parser.add_argument("--train_batch_size",
default=4096, type=int,
help="Total batch size for training. "
"(batch by tokens)")
parser.add_argument("--val_batch_size",
default=4096, type=int,
help="Total batch size for validation. "
"(batch by tokens)")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=16,
help="Number of updates steps to accumualte before "
"performing a backward/update pass.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--valid_steps",
default=1000,
type=int,
help="Run validation every X steps")
parser.add_argument("--num_train_steps",
default=100000,
type=int,
help="Total number of training updates to perform.")
parser.add_argument("--optim", default='adam',
choices=['adam', 'adamax', 'adamw'],
help="optimizer")
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+', type=float,
help="beta for adam optimizer")
parser.add_argument("--dropout",
default=0.1,
type=float,
help="tune dropout regularization")
parser.add_argument("--weight_decay",
default=0.0,
type=float,
help="weight decay (L2) regularization")
parser.add_argument("--grad_norm",
default=0.25,
type=float,
help="gradient clipping (-1 for no clipping)")
parser.add_argument("--warmup_steps",
default=4000,
type=int,
help="Number of training steps to perform linear "
"learning rate warmup for.")
# device parameters
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
# can use config files
parser.add_argument('--config', help='JSON config files')
args = parse_with_config(parser)
checkpoint = os.path.basename(args.pretrained_model_name_or_path)
hvd.init()
n_gpu = hvd.size()
args.n_gpu = n_gpu
base_dir = '_'.join([args.project,
f'{args.n_gpu * args.gradient_accumulation_steps}',
f'{args.num_train_steps}',
f'{args.learning_rate}',
f'{args.dropout}',
f'{args.weight_decay}'])
args.output_dir = os.path.join(args.output_dir,
f'{args.model}_context-{args.use_context}',
os.path.basename(args.pretrained_model_name_or_path),
os.path.basename(args.config),
base_dir)
if exists(args.output_dir) and os.listdir(f'{args.output_dir}/ckpt'):
if args.mode == 'train':
raise ValueError("Output directory ({}) already exists and is not "
"empty.".format(args.output_dir))
main(args)