forked from shimaokasonse/NFGEC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
67 lines (54 loc) · 2.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
import argparse
from sklearn.externals import joblib
from src.model.nn_model import Model
from src.batcher import Batcher
from src.hook import acc_hook, save_predictions
parser = argparse.ArgumentParser()
parser.add_argument("dataset",help="dataset to train model",choices=["figer","gillick"])
parser.add_argument("encoder",help="context encoder to use in model",choices=["averaging","lstm","attentive"])
parser.add_argument('--feature', dest='feature', action='store_true')
parser.add_argument('--no-feature', dest='feature', action='store_false')
parser.set_defaults(feature=False)
parser.add_argument('--hier', dest='hier', action='store_true')
parser.add_argument('--no-hier', dest='hier', action='store_false')
parser.set_defaults(hier=False)
args = parser.parse_args()
print "Creating the model"
model = Model(type=args.dataset,encoder=args.encoder,hier=args.hier,feature=args.feature)
print "Loading the dictionaries"
d = "Wiki" if args.dataset == "figer" else "OntoNotes"
dicts = joblib.load("data/"+d+"/dicts_"+args.dataset+".pkl")
print "Loading the datasets"
train_dataset = joblib.load("data/"+d+"/train_"+args.dataset+".pkl")
dev_dataset = joblib.load("data/"+d+"/dev_"+args.dataset+".pkl")
test_dataset = joblib.load("data/"+d+"/test_"+args.dataset+".pkl")
print
print "train_size:", train_dataset["data"].shape[0]
print "dev_size: ", dev_dataset["data"].shape[0]
print "test_size: ", test_dataset["data"].shape[0]
print "Creating batchers"
# batch_size : 1000, context_length : 10
train_batcher = Batcher(train_dataset["storage"],train_dataset["data"],1000,10,dicts["id2vec"])
dev_batcher = Batcher(dev_dataset["storage"],dev_dataset["data"],dev_dataset["data"].shape[0],10,dicts["id2vec"])
test_batcher = Batcher(test_dataset["storage"],test_dataset["data"],test_dataset["data"].shape[0],10,dicts["id2vec"])
step_par_epoch = 2000 if args.dataset == "figer" else 150
print "start trainning"
for epoch in range(5):
train_batcher.shuffle()
print "epoch",epoch
for i in range(step_par_epoch):
context_data, mention_representation_data, target_data, feature_data = train_batcher.next()
model.train(context_data, mention_representation_data, target_data, feature_data)
print "------dev--------"
context_data, mention_representation_data, target_data, feature_data = dev_batcher.next()
scores = model.predict(context_data, mention_representation_data,feature_data)
acc_hook(scores, target_data)
print "Training completed. Below are the final test scores: "
print "-----test--------"
context_data, mention_representation_data, target_data, feature_data = test_batcher.next()
scores = model.predict(context_data, mention_representation_data, feature_data)
acc_hook(scores, target_data)
fname = args.dataset + "_" + args.encoder + "_" + str(args.feature) + "_" + str(args.hier) + ".txt"
save_predictions(scores, target_data, dicts["id2label"],fname)
print "Cheers!"