-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
141 lines (127 loc) · 5.71 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import trainer
import finger_trainer
import evaluator
import finger_evaluator
from dataloader import unnormalize
from torchvision import transforms
from PIL import Image
def visualize_model_output(dataloader, model, device='cuda'):
cols, rows = 8, 3
figure = plt.figure(figsize=(cols*3, rows*3))
# evaluate a single batch and reshape for display
x, y = next(iter(dataloader))
batchsize = x.shape[0]
x_out = evaluator.get_inference_output(model, x, device)
x_out = torch.where(x_out > 0, 1, 0).cpu()
# flatten y for computing evaluation metrics
y_flatten = y[:,0,:,:].reshape(-1, y.shape[-2] * y.shape[-1]).cpu()
print(f"Accuracy = {trainer.get_acc(x_out, y_flatten).item() * 100}%")
print(f"Precision = {trainer.get_precision(x_out, y_flatten).item() * 100}%")
print(f"Recall = {trainer.get_recall(x_out, y_flatten).item() * 100}%")
# reshape model output to have shape (batch_size, channel, height, width)
x_out = x_out.reshape(-1, y.shape[1], y.shape[2], y.shape[3]).cpu()
for i in range(1, cols+1):
sample_idx = torch.randint(x.shape[0], size=(1,)).item()
img, prediction, mask = x[i], x_out[i], y[i]
figure.add_subplot(rows, cols, i)
plt.title(f"Image {i}")
plt.axis("off")
plt.imshow(unnormalize(img).permute(1, 2, 0))
j = cols + i
figure.add_subplot(rows, cols, j)
plt.title(f"Predicted {i}")
plt.axis("off")
k = cols * 2 + i
plt.imshow(prediction.permute(1, 2, 0))
figure.add_subplot(rows, cols, k)
plt.title(f"Actual {i}")
plt.axis("off")
plt.imshow(mask.permute(1, 2, 0))
plt.show()
def visualize_finger_model_output(dataloader, model, device='cuda'):
cols, rows = 8, 3
figure = plt.figure(figsize=(cols*3, rows*3))
# evaluate a single batch and reshape for display
x, y = next(iter(dataloader))
batchsize = x.shape[0]
x_out = evaluator.get_inference_output(model, x, device)
#x_out = torch.where(x_out > 0, 1, 0).cpu()
x_out = x_out.cpu()
print(f"Accuracy = {finger_trainer.get_acc_fingertip(x_out, y).item() * 100}%")
# reshape model output to have shape (batch_size, channel, height, width)
#x_out = x_out.reshape(-1, y.shape[1], y.shape[2], y.shape[3]).cpu()
for i in range(1, cols+1):
sample_idx = torch.randint(x.shape[0], size=(1,)).item()
img, finger_prediction, finger_label = x[i], x_out[i], y[i]
img = unnormalize(img).cpu().permute(1, 2, 0).numpy().copy()
figure.add_subplot(rows, cols, i)
plt.title(f"Image {i}")
plt.axis("off")
plt.imshow(img)
j = cols + i
figure.add_subplot(rows, cols, j)
finger_prediction = np.rint((finger_prediction[0].item(), finger_prediction[1].item()))
finger_prediction = (int(finger_prediction[0]), int(finger_prediction[1]))
plt.title(f"Predicted {i} Coor {finger_prediction}")
plt.axis("off")
prediction_image = cv.circle(img, finger_prediction, 7, (255,0,0), 1)
plt.imshow(prediction_image)
k = cols * 2 + i
figure.add_subplot(rows, cols, k)
finger_label = (finger_label[0].item(), finger_label[1].item())
plt.title(f"Actual {i} Coor {finger_label}")
plt.axis("off")
label_image = cv.circle(img, finger_label, 7, (255,0,0), 1)
plt.imshow(label_image)
plt.show()
# visualize model outputs of images from test_dir
def visualize_test_data(test_dir, model, device='cuda'):
test_filenames = sorted(os.listdir(test_dir))
test_paths = [test_dir + p for p in test_filenames if '.jpg' in p]
totensor = transforms.ToTensor()
resize = transforms.Resize((480, 640))
# To use pretrained models, input must be normalized as follows (pytorch models documentation):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
no_aug_transforms = transforms.Compose((resize, np.array, totensor, normalize))
cols, rows = 8, 3
figure = plt.figure(figsize=(cols*3, rows*3))
for i in range(1, cols+1):
x = Image.open(test_paths[i])
x = no_aug_transforms(x)
x = torch.unsqueeze(x, 0)
x_out = evaluator.get_inference_output(model, x, device)
x_out = torch.where(x_out > 0, 1, 0).cpu()
# reshape model output to have shape (batch_size, channel, height, width)
x_out = x_out.reshape(1, x.shape[2], x.shape[3]).cpu()
img, prediction = x[0], x_out[0]
figure.add_subplot(rows, cols, i)
plt.title(f"Image {i}")
plt.axis("off")
plt.imshow(unnormalize(img).permute(1, 2, 0))
j = cols + i
figure.add_subplot(rows, cols, j)
plt.title(f"Predicted {i}")
plt.axis("off")
plt.imshow(prediction)
plt.show()
# take rgb image (in numpy array form) and return model output
def get_img_output(img, model, device='cuda'):
assert img.shape == (480, 640, 3)
totensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
no_aug_transforms = transforms.Compose((totensor, normalize))
img = no_aug_transforms(img)
# adding a batch dimension (batch of one)
img = torch.unsqueeze(img, 0)
x_out = evaluator.get_inference_output(model, img, device)
x_out = torch.where(x_out < 0, 1, 0).cpu()
# reshape model output to have shape (batch_size, channel, height, width)
x_out = x_out.reshape(1, 480, 640)
# take image and model output out of batch dimension
img, prediction = img[0], x_out[0]
return (img, prediction)