-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathRnotes-4-regression.html
959 lines (884 loc) · 69.5 KB
/
Rnotes-4-regression.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
<!DOCTYPE html>
<html lang="zh-Hant"
>
<head>
<title>R语言从入门到放弃 (4). 统计回归 - mx's blog</title>
<!-- Using the latest rendering mode for IE -->
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="theme-color" content="#6b5594">
<meta name="msapplication-navbutton-color" content="#6b5594">
<meta name="apple-mobile-web-app-status-bar-style" content="#6b5594">
<link rel="manifest" href="/manifest.json">
<link rel="canonical" href="https://x-wei.github.io/Rnotes-4-regression.html">
<meta name="author" content="mx" />
<meta name="keywords" content="R" />
<meta name="description" content="R里面的统计函数有很多, 这里只用线性模型lm以及(一维)非参估计最常用的三个smoother: Nadaraya-Watson kernel(NW, ksmooth), Local Polynomial(LP, loess), Smoothing Spline(SS, smooth.spline). 用这三个smoother作为例子, 介绍R里面统计回归的一些用法. 数据的形式是: 目标是估计函数m(). 例子使用R自带的cars数据集, 它包含两列: 汽车速度speed和刹车距离dist. > data(cars) > summary(cars) speed dist Min. : 4.0 Min. : 2.00 1st Qu.:12.0 1st Qu.: 26.00 Median :15 ..." />
<meta property="og:site_name" content="mx's blog" />
<meta property="og:type" content="article"/>
<meta property="og:title" content="R语言从入门到放弃 (4). 统计回归"/>
<meta property="og:url" content="https://x-wei.github.io/Rnotes-4-regression.html"/>
<meta property="og:description" content="R里面的统计函数有很多, 这里只用线性模型lm以及(一维)非参估计最常用的三个smoother: Nadaraya-Watson kernel(NW, ksmooth), Local Polynomial(LP, loess), Smoothing Spline(SS, smooth.spline). 用这三个smoother作为例子, 介绍R里面统计回归的一些用法. 数据的形式是: 目标是估计函数m(). 例子使用R自带的cars数据集, 它包含两列: 汽车速度speed和刹车距离dist. > data(cars) > summary(cars) speed dist Min. : 4.0 Min. : 2.00 1st Qu.:12.0 1st Qu.: 26.00 Median :15 ..."/>
<meta property="article:published_time" content="2016-07-29" />
<meta property="article:section" content="notes" />
<meta property="article:tag" content="R" />
<meta property="article:author" content="mx" />
<meta property="og:image"
content="https://x-wei.github.io/Rnotes-4-regression.png"/>
<!-- Bootstrap -->
<link href="https://x-wei.github.io/theme/css/bootstrap.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/font-awesome.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/pygments/manni.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/tipuesearch/tipuesearch.css" rel="stylesheet">
<link rel="stylesheet" href="https://x-wei.github.io/theme/css/style.css" type="text/css"/>
<link href="https://x-wei.github.io/feeds/atom.xml" type="application/atom+xml" rel="alternate"
title="mx's blog ATOM Feed"/>
<link href="https://x-wei.github.io/theme/css/material.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/ripples.css" rel="stylesheet">
</head>
<body>
<div style="display:none" id="title">R语言从入门到放弃 (4). 统计回归 - mx's blog</div>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
<span class="sr-only">切换导航</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a href="https://x-wei.github.io/" class="navbar-brand">
mx's blog </a>
</div>
<div class="collapse navbar-collapse navbar-ex1-collapse">
<ul class="nav navbar-nav">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-user"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
</ul>
</li>
<ul class="nav navbar-nav hidden-xs hidden-sm">
</ul>
</ul>
<ul class="nav navbar-nav hidden-md hidden-lg hidden-xl">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-folder-o"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li >
<a href="https://x-wei.github.io/category/misc.html"><i class="fa fa-folder-o"></i> Misc</a>
</li>
<li >
<a href="https://x-wei.github.io/category/music.html"><i class="fa fa-folder-o"></i> Music</a>
</li>
<li class="active">
<a href="https://x-wei.github.io/category/notes.html"><i class="fa fa-folder-o"></i> Notes</a>
</li>
<li >
<a href="https://x-wei.github.io/category/soft.html"><i class="fa fa-folder-o"></i> Soft</a>
</li>
<li >
<a href="https://x-wei.github.io/category/tech.html"><i class="fa fa-folder-o"></i> Tech</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav hidden-xs hidden-sm">
<li >
<a href="https://x-wei.github.io/category/misc.html"><i class="fa fa-folder-o"></i> Misc</a>
</li>
<li >
<a href="https://x-wei.github.io/category/music.html"><i class="fa fa-folder-o"></i> Music</a>
</li>
<li class="active">
<a href="https://x-wei.github.io/category/notes.html"><i class="fa fa-folder-o"></i> Notes</a>
</li>
<li >
<a href="https://x-wei.github.io/category/soft.html"><i class="fa fa-folder-o"></i> Soft</a>
</li>
<li >
<a href="https://x-wei.github.io/category/tech.html"><i class="fa fa-folder-o"></i> Tech</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right hidden-sm hidden-md hidden-lg hidden-xl">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-search"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li><span>
<form class="navbar-search" action="/search.html">
<input type="text" class="search-query form-control col-lg-16" placeholder="Search" name="q" id="tipue_search_input" required>
</form></span>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-right navbar-form hidden-xs">
<li><span>
<form class="navbar-search" action="/search.html">
<input type="text" class="search-query form-control col-lg-16" placeholder="查找" name="q" id="tipue_search_input" required>
</form></span>
</li>
</ul>
<ul class="nav navbar-nav navbar-right hidden-xs">
<li><a href="https://x-wei.github.io/archives.html"><i class="fa fa-th-list"></i><span class="icon-label">Archive</span></a></li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
</div> <!-- /.navbar -->
<!-- Banner -->
<!-- End Banner -->
<div class="container" style="min-height: 100%;height: auto !important;height: 100%;">
<div class="row" style="padding-bottom:80px;padding-top:80px;">
<div class="col-xl-21 col-lg-20 col-md-18">
<div id="loading-block">
<ol class="breadcrumb">
<li><a href="https://x-wei.github.io/" title="mx's blog"><i class="fa fa-home fa-lg"></i></a></li>
<li><a href="https://x-wei.github.io/category/notes.html" title="notes">notes</a></li>
<li class="active">R语言从入门到放弃 (4). 统计回归</li>
</ol>
<section id="content" class="article-content">
<article>
<header class="page-header jumbotron jumbotron-primary panel-primary" id="article-header">
<div class="panel-heading">
<h1>
R语言从入门到放弃 (4). 统计回归
<a href="https://x-wei.github.io/Rnotes-4-regression.html"
rel="bookmark"
class="btn btn-primary btn-lg"
title="到 R语言从入门到放弃 (4). 统计回归 的永久链接">
<i class="mdi-action-launch"></i>
</a>
</h1>
</div>
<div class="panel-body">
<div class="post-info">
<span class="published">
<time datetime="2016-07-29T00:00:00+02:00"><i class="fa fa-calendar"></i> Fri, 29 Jul 2016</time>
</span>
<span class="btn-group">
<a href="https://x-wei.github.io/tag/r.html" class="btn btn-primary btn-xs"><i class="fa fa-tag"></i> R</a>
</span>
<span class="label label-default">Series</span>
Part 4 of «R语言从入门到放弃»
</div><!-- /.post-info --> </div>
</header>
<div class="entry-content jumbotron" id="article-content">
<div class="panel panel-default">
<div class="panel-heading">
目录
</div>
<div class="panel-boy">
<div id="toc"><ul><li><a class="toc-href" href="#theory" title="Theory">Theory</a><ul><li><a class="toc-href" href="#linear-model" title="linear model">linear model</a></li><li><a class="toc-href" href="#nadaraya-watson-kernel-smoother" title="Nadaraya-Watson kernel smoother">Nadaraya-Watson kernel smoother</a></li><li><a class="toc-href" href="#local-polynomial-smoother" title="Local Polynomial smoother">Local Polynomial smoother</a></li><li><a class="toc-href" href="#smoothing-spline" title="Smoothing Spline">Smoothing Spline</a></li></ul></li><li><a class="toc-href" href="#fit-model_1" title="fit model">fit model</a><ul><li><a class="toc-href" href="#formula" title="formula">formula</a></li><li><a class="toc-href" href="#fit-models" title="fit models">fit models</a></li></ul></li><li><a class="toc-href" href="#predict-fittedresiduals_1" title="predict, fitted/residuals">predict, fitted/residuals</a></li><li><a class="toc-href" href="#bandwidthdf-hat-matrix" title="bandwidth&df: Hat Matrix">bandwidth&df;: Hat Matrix</a></li><li><a class="toc-href" href="#cv-and-hat-matrix" title="CV and Hat Matrix">CV and Hat Matrix</a></li></ul></div>
</div>
</div>
<p>R里面的统计函数有很多, 这里只用线性模型<code>lm</code>以及(一维)非参估计最常用的三个smoother: Nadaraya-Watson kernel(<strong>NW, </strong><code>ksmooth</code>), Local Polynomial(<strong>LP, </strong><code>loess</code>), Smoothing Spline(<strong>SS, </strong><code>smooth.spline</code>). 用这三个smoother作为例子, 介绍R里面统计回归的一些用法. </p>
<p>数据的形式是: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image002.png"/></p>
<p>目标是估计函数m(). 例子使用R自带的<code>cars</code>数据集, 它包含两列: 汽车速度speed和刹车距离dist. </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="err">> data(cars)</span></span>
<span class="code-line"><span class="err">> summary(cars)</span></span>
<span class="code-line"><span class="err"> speed dist </span></span>
<span class="code-line"><span class="err"> Min. : 4.0 Min. : 2.00 </span></span>
<span class="code-line"><span class="err"> 1st Qu.:12.0 1st Qu.: 26.00 </span></span>
<span class="code-line"><span class="err"> Median :15.0 Median : 36.00 </span></span>
<span class="code-line"><span class="err"> Mean :15.4 Mean : 42.98 </span></span>
<span class="code-line"><span class="err"> 3rd Qu.:19.0 3rd Qu.: 56.00 </span></span>
<span class="code-line"><span class="err"> Max. :25.0 Max. :120.00 </span></span>
<span class="code-line"><span class="err">> ?cars</span></span>
<span class="code-line"><span class="err">> plot(cars$speed, cars$dist)</span></span>
</pre></div>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image003.png"/></p>
<h1 id="theory">Theory</h1>
<p>首先简单介绍一下这4个smoother的原理: </p>
<h3 id="linear-model">linear model</h3>
<p>认为m是线性形式(包含intercept): </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image008.png"/></p>
<h3 id="nadaraya-watson-kernel-smoother">Nadaraya-Watson kernel smoother</h3>
<p>m_NW 在x处的取值为Yi的加权平均, 权重是按照kernel K()确定的. </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image.png"/></p>
<p>另外m_NW(x)还可以看做是最小化加权的square-error: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image001.png"/></p>
<h3 id="local-polynomial-smoother">Local Polynomial smoother</h3>
<p>m_NW(x)最小化加权sq-err那个表达式里, 可以是用一个<em>常数函数</em>mx来估计在x处的取值, LP将它泛化为p-1阶多项式的形式, m在x附近是多项式形式. m(u)=poly(x-u), 这个多项式的系数为beta(x): </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image004.png"/></p>
<p>最后m_LP在x处的取值为: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image005.png"/></p>
<h3 id="smoothing-spline">Smoothing Spline</h3>
<p>设定m的形式为knot在xi的spline, 加上penalize项: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image006.png"/></p>
<p>另外SS可以看作是bandwidth随x变化的kernel smoother. </p>
<h1 id="fit-model_1">fit model</h1>
<h3 id="formula">formula</h3>
<p><code>lm</code>和<code>loess</code>的文档里都提到参数为formula, 它大概是指示要fit的表达式形式. 这里面的加减号不是算数意义上的加减. 看例子: </p>
<ul>
<li><code>dist ~ speed</code>: 表示dist是speed的函数</li>
<li><code>y ~ .</code> : 表示y是所有其他变量的函数</li>
<li><code>y ~ x1+x2</code>: y 是x1和x2的函数</li>
<li><code>y ~ x - 1</code>: y是x的函数, 且没有intercept项</li>
</ul>
<h3 id="fit-models">fit models</h3>
<p>这几个函数的fit写法各不相同, 有的要提供formula, 有的要提供x和y值, 需要看文档: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">fit.lm</span> <span class="o"><-</span> <span class="nf">lm</span><span class="p">(</span><span class="n">dist</span><span class="o">~</span><span class="n">speed</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">cars</span><span class="p">)</span></span>
<span class="code-line"><span class="n">fit.nw</span> <span class="o"><-</span> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">)</span></span>
<span class="code-line"><span class="n">fit.lp</span> <span class="o"><-</span> <span class="nf">loess</span><span class="p">(</span><span class="n">dist</span><span class="o">~</span><span class="n">speed</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">cars</span><span class="p">)</span></span>
<span class="code-line"><span class="n">fit.ss</span> <span class="o"><-</span> <span class="nf">smooth.spline</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">)</span></span>
</pre></div>
<h1 id="predict-fittedresiduals_1">predict, fitted/residuals</h1>
<p>predict的写法也是各不相同, 一般都是用<code>predict</code>函数, 然而这个函数在作用到不同smoother上面, 参数和返回值也都不一样......orz 关于<code>xx</code>smoother的predict函数用法参考?<code>predict.xx</code>. 最奇葩的是NW, 它不能用<code>predict</code>函数, 而要fit的时候在<code>skmooth</code>函数里传入<code>x.points</code>参数... </p>
<p>看predict例子: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">newspeed</span> <span class="o"><-</span> <span class="m">1</span><span class="o">:</span><span class="m">26</span></span>
<span class="code-line"><span class="n">pred.lm</span> <span class="o"><-</span> <span class="nf">predict</span><span class="p">(</span><span class="n">fit.lm</span><span class="p">,</span> <span class="n">newdata</span> <span class="o">=</span> <span class="nf">data.frame</span><span class="p">(</span><span class="n">speed</span> <span class="o">=</span> <span class="n">newspeed</span><span class="p">),</span> <span class="n">interval</span> <span class="o">=</span> <span class="s">"prediction"</span><span class="p">)</span><span class="n">[</span><span class="p">,</span><span class="s">"fit"</span><span class="n">]</span></span>
<span class="code-line"><span class="n">pred.nw</span> <span class="o"><-</span> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="m">2</span><span class="p">,</span> <span class="n">x.points</span><span class="o">=</span><span class="n">newspeed</span><span class="p">)</span><span class="o">$</span><span class="n">y</span></span>
<span class="code-line"><span class="n">pred.lp</span> <span class="o"><-</span> <span class="nf">predict</span><span class="p">(</span><span class="n">fit.lp</span><span class="p">,</span> <span class="n">newdata</span><span class="o">=</span><span class="n">newspeed</span><span class="p">)</span></span>
<span class="code-line"><span class="n">pred.ss</span> <span class="o"><-</span> <span class="nf">predict</span><span class="p">(</span><span class="n">fit.ss</span><span class="p">,</span> <span class="n">x</span><span class="o">=</span><span class="n">newspeed</span><span class="p">)</span><span class="o">$</span><span class="n">y</span></span>
</pre></div>
<p>另外, 如果想看smoother在design points(Xi)处的预测值, 可以用<code>fitted</code>函数(NW还是不能用), 例子: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">fitted.lm</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="n">fit.lm</span><span class="p">)</span></span>
<span class="code-line"><span class="n">fitted.nw</span> <span class="o"><-</span> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="m">2</span><span class="p">,</span> <span class="n">x.points</span><span class="o">=</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">)</span><span class="o">$</span><span class="n">y</span></span>
<span class="code-line"><span class="n">fitted.lp</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="n">fit.lp</span><span class="p">)</span></span>
<span class="code-line"><span class="n">fitted.ss</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="n">fit.ss</span><span class="p">)</span></span>
</pre></div>
<p>要看每个点的residual ri=yi-yhat_i, 用<code>residuals</code>函数(NW不行):</p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">resd.lm</span> <span class="o"><-</span> <span class="nf">residuals</span><span class="p">(</span><span class="n">fit.lm</span><span class="p">)</span></span>
<span class="code-line"><span class="n">resd.nw</span> <span class="o"><-</span> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="m">2</span><span class="p">,</span> <span class="n">x.points</span><span class="o">=</span><span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">)</span><span class="o">$</span><span class="n">y</span> <span class="o">-</span> <span class="n">cars</span><span class="o">$</span><span class="n">dist</span> </span>
<span class="code-line"><span class="n">resd.lp</span> <span class="o"><-</span> <span class="nf">residuals</span><span class="p">(</span><span class="n">fit.lp</span><span class="p">)</span></span>
<span class="code-line"><span class="n">resd.ss</span> <span class="o"><-</span> <span class="nf">residuals</span><span class="p">(</span><span class="n">fit.ss</span><span class="p">)</span></span>
</pre></div>
<p>可以画出这几个方法的fit: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="err">abline(fit.lm, lty=1, col=1) # linear model is just a straigh line</span></span>
<span class="code-line"><span class="err">lines(newspeed, pred.nw, lty=2, col=2)</span></span>
<span class="code-line"><span class="err">lines(newspeed, pred.lp, lty=3, col=3)</span></span>
<span class="code-line"><span class="err">lines(newspeed, pred.ss, lty=4, col=4)</span></span>
<span class="code-line"><span class="err">legend("topleft", c("lm", "nw", "lp", "ss"), lty=1:4, col=1:4)</span></span>
</pre></div>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image009.png"/></p>
<h1 id="bandwidthdf-hat-matrix">bandwidth&df: Hat Matrix</h1>
<p>三个非参估计的smoother都有"带宽"(bandwidth)或者"自由度"(df)的概念, 带宽即NW或LP表达式里的h. </p>
<p>自由度df是带宽的函数, smoother的df可以用它的<strong>hat matrix</strong> S计算出来. </p>
<p>一个smoother的hat matrix S, 是把训练值Y映射到估计值Yhat的矩阵: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image010.png"/></p>
<p>而df则是S的迹: df = tr(S). df的</p>
<p>根据script(P28), S的第j列可以用这个smoother fit一个unit vector来得到: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image012.png"/></p>
<p>所以计算S可以用下面的代码: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">n</span> <span class="o"><-</span> <span class="nf">nrow</span><span class="p">(</span><span class="n">cars</span><span class="p">)</span></span>
<span class="code-line"><span class="n">Snw</span> <span class="o"><-</span> <span class="n">Slp</span> <span class="o"><-</span> <span class="n">Sss</span> <span class="o"><-</span> <span class="nf">matrix</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">nrow</span><span class="o">=</span><span class="n">n</span><span class="p">,</span> <span class="n">ncol</span><span class="o">=</span><span class="n">n</span><span class="p">)</span></span>
<span class="code-line"><span class="n">In</span> <span class="o"><-</span> <span class="nf">diag</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="c1"># identity matrix</span></span>
<span class="code-line"><span class="nf">for</span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">n</span><span class="p">){</span></span>
<span class="code-line"> <span class="n">y</span> <span class="o"><-</span> <span class="n">In[</span><span class="p">,</span><span class="n">j]</span> <span class="c1"># unit vector ej</span></span>
<span class="code-line"> <span class="n">Snw[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">,</span> <span class="n">bandwidth</span> <span class="o">=</span> <span class="m">2</span><span class="p">,</span> <span class="n">x.points</span><span class="o">=</span><span class="n">x</span><span class="p">)</span><span class="o">$</span><span class="n">y</span></span>
<span class="code-line"> <span class="n">Slp[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="nf">loess</span><span class="p">(</span><span class="n">y</span><span class="o">~</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">))</span></span>
<span class="code-line"> <span class="n">Sss[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="nf">smooth.spline</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span></span>
<span class="code-line"><span class="p">}</span></span>
<span class="code-line"></span>
<span class="code-line"><span class="n">df.nw</span> <span class="o"><-</span> <span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Snw</span><span class="p">))</span></span>
<span class="code-line"><span class="n">df.lp</span> <span class="o"><-</span> <span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Slp</span><span class="p">))</span></span>
<span class="code-line"><span class="n">df.ss</span> <span class="o"><-</span> <span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Sss</span><span class="p">))</span></span>
</pre></div>
<p>发现三个非参smoother的自由度不同, 所以上面画图的比较并没有意义, 为了让三者的自由度相同, 可以设定ksmooth/loess/smooth.spline的参数.</p>
<p>控制带宽, Lp的参数为<code>span</code>, SS的参数为<code>spar</code>; 而指定想要的自由度则分别是<code>enp.target</code>和<code>df</code>. </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="nf">cat</span><span class="p">(</span><span class="s">"let all 3 np smoother use the same df="</span><span class="p">,</span> <span class="n">df.nw</span><span class="p">)</span></span>
<span class="code-line"><span class="n">Slp</span> <span class="o"><-</span> <span class="n">Sss</span> <span class="o"><-</span> <span class="nf">matrix</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">nrow</span><span class="o">=</span><span class="n">n</span><span class="p">,</span> <span class="n">ncol</span><span class="o">=</span><span class="n">n</span><span class="p">)</span></span>
<span class="code-line"><span class="n">In</span> <span class="o"><-</span> <span class="nf">diag</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="c1"># identity matrix</span></span>
<span class="code-line"><span class="nf">for</span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">n</span><span class="p">){</span></span>
<span class="code-line"> <span class="n">y</span> <span class="o"><-</span> <span class="n">In[</span><span class="p">,</span><span class="n">j]</span></span>
<span class="code-line"> <span class="n">Slp[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="nf">loess</span><span class="p">(</span><span class="n">y</span><span class="o">~</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">enp.target</span><span class="o">=</span><span class="n">df.nw</span><span class="p">))</span></span>
<span class="code-line"> <span class="n">Sss[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">fitted</span><span class="p">(</span><span class="nf">smooth.spline</span><span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">df</span><span class="o">=</span><span class="n">df.nw</span><span class="p">))</span></span>
<span class="code-line"><span class="p">}</span></span>
<span class="code-line"><span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Slp</span><span class="p">))</span></span>
<span class="code-line"><span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Sss</span><span class="p">))</span></span>
</pre></div>
<p>发现SS的df参数使用以后控制的非常接近NW的df了, 不过lp的df还是不够接近, 用span来控制应该更准确一些, 为了找到合适的span, 用以下代码来寻找使得df=df.nw的span取值: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">dflp</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">span</span><span class="p">,</span> <span class="n">val</span><span class="p">){</span></span>
<span class="code-line"> <span class="nf">for</span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">n</span><span class="p">)</span></span>
<span class="code-line"> <span class="n">Slp[</span><span class="p">,</span><span class="n">j]</span> <span class="o"><-</span> <span class="nf">loess</span><span class="p">(</span><span class="n">In[</span><span class="p">,</span><span class="n">j]</span> <span class="o">~</span> <span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">span</span> <span class="o">=</span> <span class="n">span</span><span class="p">)</span><span class="o">$</span><span class="n">fitted</span></span>
<span class="code-line"> <span class="nf">return</span><span class="p">(</span><span class="nf">sum</span><span class="p">(</span><span class="nf">diag</span><span class="p">(</span><span class="n">Slp</span><span class="p">))</span> <span class="o">-</span> <span class="n">val</span><span class="p">)</span></span>
<span class="code-line"><span class="p">}</span></span>
<span class="code-line"><span class="n">chosen_span</span> <span class="o"><-</span> <span class="nf">uniroot</span><span class="p">(</span><span class="n">dflp</span><span class="p">,</span> <span class="nf">c</span><span class="p">(</span><span class="m">0.2</span><span class="p">,</span> <span class="m">0.5</span><span class="p">),</span> <span class="n">val</span> <span class="o">=</span> <span class="n">df.nw</span><span class="p">)</span><span class="o">$</span><span class="n">root</span></span>
</pre></div>
<p>如果不用这个循环计算的话, 可以用<code>sfsmisc</code>包里的<code>hatMat</code>函数: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image013.png"/> </p>
<p>参数<code>trace</code>取TRUE的话, 直接返回hat matrix的迹, 否则返回整个hat matrix.
需要把要计算的smoother包装成一个pred.sm函数传入, 这个函数接受x和y, 返回fitted数值. 例子: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="err">hatMat(cars$speed, T, </span></span>
<span class="code-line"><span class="err"> pred.sm = function(x,y) </span></span>
<span class="code-line"><span class="err"> ksmooth(x, y, kernel="normal", bandwidth=2, x.points=x)$y )</span></span>
<span class="code-line"><span class="err">hatMat(cars$speed, T, </span></span>
<span class="code-line"><span class="err"> pred.sm = function(x,y) fitted(loess(y~x, span=chosen_span)) )</span></span>
<span class="code-line"><span class="err">hatMat(cars$speed, T, </span></span>
<span class="code-line"><span class="err"> pred.sm = function(x,y) fitted(smooth.spline(x, y, df=df.nw)) )</span></span>
</pre></div>
<h1 id="cv-and-hat-matrix">CV and Hat Matrix</h1>
<p>为了预测smoother的performance, 用loo CV来估计MSE(mean sq err)的值. </p>
<p>loo CV可以用下面这个通用函数得到(注意看对于参数的要求): </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="err">##</span><span class="s1">' Calculates the LOO CV score for given data and regression prediction function</span></span>
<span class="code-line"><span class="s1">##'</span><span class="w"></span></span>
<span class="code-line"><span class="err">##</span><span class="s1">' @param reg.data: regression data; data.frame with columns '</span><span class="n">x</span><span class="s1">', '</span><span class="n">y</span><span class="s1">'</span></span>
<span class="code-line"><span class="s1">##'</span><span class="w"> </span><span class="nv">@param</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="nl">fcn</span><span class="p">:</span><span class="w"> </span><span class="n">regr</span><span class="p">.</span><span class="n">prediction</span><span class="w"> </span><span class="k">function</span><span class="p">;</span><span class="w"> </span><span class="nl">arguments</span><span class="p">:</span><span class="w"></span></span>
<span class="code-line"><span class="err">##</span><span class="s1">' reg.x: regression x-values</span></span>
<span class="code-line"><span class="s1">##'</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="nl">y</span><span class="p">:</span><span class="w"> </span><span class="n">regression</span><span class="w"> </span><span class="n">y</span><span class="o">-</span><span class="k">values</span><span class="w"></span></span>
<span class="code-line"><span class="err">##</span><span class="s1">' x: x-value(s) of evaluation point(s)</span></span>
<span class="code-line"><span class="s1">##'</span><span class="w"> </span><span class="k">value</span><span class="err">:</span><span class="w"> </span><span class="n">prediction</span><span class="w"> </span><span class="k">at</span><span class="w"> </span><span class="n">point</span><span class="p">(</span><span class="n">s</span><span class="p">)</span><span class="w"> </span><span class="n">x</span><span class="w"></span></span>
<span class="code-line"><span class="err">##'</span><span class="w"> </span><span class="nv">@return</span><span class="w"> </span><span class="n">LOOCV</span><span class="w"> </span><span class="n">score</span><span class="w"></span></span>
<span class="code-line"><span class="n">loocv</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="k">function</span><span class="p">(</span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="n">fcn</span><span class="p">)</span><span class="err">{</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="err">##</span><span class="w"> </span><span class="n">Help</span><span class="w"> </span><span class="k">function</span><span class="w"> </span><span class="k">to</span><span class="w"> </span><span class="n">calculate</span><span class="w"> </span><span class="n">leave</span><span class="o">-</span><span class="n">one</span><span class="o">-</span><span class="k">out</span><span class="w"> </span><span class="n">regression</span><span class="w"> </span><span class="k">values</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="n">loo</span><span class="p">.</span><span class="n">reg</span><span class="p">.</span><span class="k">value</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="k">function</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="n">fcn</span><span class="p">)</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="k">return</span><span class="p">(</span><span class="n">reg</span><span class="p">.</span><span class="n">fcn</span><span class="p">(</span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="err">$</span><span class="n">x</span><span class="o">[</span><span class="n">-i</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="err">$</span><span class="n">y</span><span class="o">[</span><span class="n">-i</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="err">$</span><span class="n">x</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">))</span><span class="w"></span></span>
<span class="code-line"></span>
<span class="code-line"><span class="w"> </span><span class="err">##</span><span class="w"> </span><span class="n">Calculate</span><span class="w"> </span><span class="n">LOO</span><span class="w"> </span><span class="n">regression</span><span class="w"> </span><span class="k">values</span><span class="w"> </span><span class="k">using</span><span class="w"> </span><span class="n">the</span><span class="w"> </span><span class="n">help</span><span class="w"> </span><span class="k">function</span><span class="w"> </span><span class="n">above</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">nrow</span><span class="p">(</span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="p">)</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="n">loo</span><span class="p">.</span><span class="k">values</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">sapply</span><span class="p">(</span><span class="mi">1</span><span class="err">:</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">loo</span><span class="p">.</span><span class="n">reg</span><span class="p">.</span><span class="k">value</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="p">,</span><span class="w"> </span><span class="n">reg</span><span class="p">.</span><span class="n">fcn</span><span class="p">)</span><span class="w"></span></span>
<span class="code-line"></span>
<span class="code-line"><span class="w"> </span><span class="err">##</span><span class="w"> </span><span class="n">Calculate</span><span class="w"> </span><span class="ow">and</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">MSE</span><span class="w"></span></span>
<span class="code-line"><span class="w"> </span><span class="k">return</span><span class="p">(</span><span class="w"> </span><span class="n">mean</span><span class="p">(</span><span class="w"> </span><span class="p">(</span><span class="n">loo</span><span class="p">.</span><span class="k">values</span><span class="o">-</span><span class="n">reg</span><span class="p">.</span><span class="k">data</span><span class="err">$</span><span class="n">y</span><span class="p">)</span><span class="o">^</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">)</span><span class="w"></span></span>
<span class="code-line"><span class="err">}</span><span class="w"></span></span>
</pre></div>
<p>比如, 为了计算NW的CV数值, 需要这样: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="n">regfcn.nw</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">regx</span><span class="p">,</span> <span class="n">regy</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span></span>
<span class="code-line"> <span class="nf">ksmooth</span><span class="p">(</span><span class="n">regx</span><span class="p">,</span> <span class="n">regy</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s">"normal"</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="m">2</span><span class="p">,</span> <span class="n">x.points</span><span class="o">=</span><span class="n">x</span><span class="p">)</span><span class="o">$</span><span class="n">y</span></span>
<span class="code-line"><span class="nf">loocv</span><span class="p">(</span><span class="nf">data.frame</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">cars</span><span class="o">$</span><span class="n">speed</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">cars</span><span class="o">$</span><span class="n">dist</span><span class="p">),</span> <span class="n">regfcn.nw</span><span class="p">)</span></span>
</pre></div>
<p>不过, 如果得到了hat Matrix S, 根据公式4.5, loo CV可以这样一次计算出来: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image014.png"/></p>
<p>试一下: </p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="c1"># compute CV using shortcut euqation</span></span>
<span class="code-line"><span class="n">yhat.nw</span> <span class="o"><-</span> <span class="n">Snw</span> <span class="o">%*%</span> <span class="n">cars</span><span class="o">$</span><span class="n">y</span> <span class="c1"># or use regfcn.nw(cars$speed, cars$dist, cars$speed)</span></span>
<span class="code-line"><span class="nf">mean</span><span class="p">(</span> <span class="p">(</span> <span class="p">(</span><span class="n">cars</span><span class="o">$</span><span class="n">y</span><span class="o">-</span><span class="n">yhat.nw</span><span class="p">)</span><span class="o">/</span> <span class="p">(</span><span class="m">1</span><span class="o">-</span><span class="nf">diag</span><span class="p">(</span><span class="n">Snw</span><span class="p">))</span> <span class="p">)</span><span class="n">^2</span> <span class="p">)</span></span>
</pre></div>
<p>得到的结果和之前用loocv一样, 都是253.9128 !~ </p>
<p>或者只用df, 计算generalized CV, 公式为: </p>
<p><img alt="" class="img-responsive" src="../images/Rnotes-4-regression/pasted_image015.png"/></p>
<div class="highlight"><pre><span class="code-line"><span></span><span class="err">#compute GCV</span></span>
<span class="code-line"><span class="err">mean( (cars$dist-yhat.nw)^2 ) / ( 1 - df.nw/n )^2</span></span>
</pre></div>
<p>得到gcv=269.3911, 和looCV也比较接近. </p>
</div>
<div class="entry-content jumbotron" id="source-content" style="display: none">
<!-- <pre><code id="source-code">
</code></pre> -->
<div id="source-code"></div>
</div>
<!-- /.entry-content -->
<div class="row" id="prevnext">
<div class="col-xs-12">
<a href="https://x-wei.github.io/Rnotes-3-plot.html" class="btn btn-default btn-lg" style="float:left;clear:both;background-color:#fff;">
<h4><i class="fa fa-arrow-left"></i>
R语言从入门到放弃 (3). 绘图
</h4>
</a>
</div>
<div class="col-xs-12">
<a href="https://x-wei.github.io/progfun1_lec5_lists.html" class="btn btn-default btn-lg" style="float:right;clear:both;background-color:#fff;">
<h4>
[Scala MOOC I] Lec5: Lists<i class="fa fa-arrow-right"></i>
</h4>
</a>
</div>
</div>
<div class="panel panel-default" id="series">
<div class="panel-heading">
<h4>
Part 4 of series «R语言从入门到放弃»:
</h4>
</div>
<ul class="list-group">
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Rnotes-1-basics.html' style="text-align:left">R语言从入门到放弃 (1). 基础</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Rnotes-2-seq_func.html' style="text-align:left">R语言从入门到放弃 (2). 向量(列表)及函数</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Rnotes-3-plot.html' style="text-align:left">R语言从入门到放弃 (3). 绘图</a></li>
<li class="list-group-item"><a class="btn btn-primary" href='https://x-wei.github.io/Rnotes-4-regression.html' style="text-align:left">R语言从入门到放弃 (4). 统计回归</a></li>
</ul>
</div>
<section class="comments" id="comments">
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-primary">
<div class="panel-heading" role="tab" id="disqus-heading">
<h4 class="panel-title">
<a data-toggle="collapse" data-parent="#accordion" href="#disqus-comments" aria-expanded="true" aria-controls="disqus-comments">
<i class="fa fa-comments-o"></i> Disqus 留言
</a>
</h4>
</div>
<div id="disqus-comments" class="panel-collapse collapse.show" role="tabpanel" aria-labelledby="disqus-heading">
<div class="panel-body">
<div class="tab-pane fade active in" id="disqus-comments">
<div id="disqus_thread"></div>
<script type="text/javascript">
/* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
var disqus_shortname = 'xweisblog'; // required: replace example with your forum shortname
var disqus_identifier = 'Rnotes-4-regression';
var disqus_url = 'https://x-wei.github.io/Rnotes-4-regression.html';
var disqus_config = function () {
this.language = "zh";
};
/* * * DON'T EDIT BELOW THIS LINE * * */
(function () {
var dsq = document.createElement('script');
dsq.type = 'text/javascript';
dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by
Disqus.</a></noscript>
<a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
</div>
</div>
</div>
</div>
</div>
</section> </article>
</section>
</div>
<!-- Modal -->
<div class="modal fade" id="myModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true">
<div class="modal-dialog modal-lg">
<div class="modal-content">
<a data-dismiss="modal" href="javascript:void(0);">
<img id="mimg" src="" style="width:100%;height:auto">
</a>
</div>
</div><!-- /.modal-dialog -->
</div><!-- /.modal -->
</div>
<div class="col-xl-3 col-lg-4 col-md-6" id="sidebar">
<aside>
<section>
<div class="sidebar-container">
<div class="sidebar-item ">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<i class="fa fa-user fa-lg"></i>
<a href="https://x-wei.github.io/about.html">
关于 mx
</a>
</h4>
</div>
<div class="panel-body" id="aboutme">
<a href="https://x-wei.github.io/about.html"><img width="100%" src="https://x-wei.github.io/../images/mx.jpg"/></a>
<h3 style="text-align:center">
<a href="https://github.com/x-wei" target="_blank">
<i class="fa fa-github" style="text-align:center"></i></a>
<a href="https://weibo.com/u/1817154611" target="_blank">
<i class="fa fa-weibo" style="text-align:center"></i></a>
<a href="mailto:[email protected]" target="_blank">
<i class="mdi-communication-email" style="text-align:center"></i></a>
</h3>
<h4 class="widget-title">推荐文章</h4>
<div class="textwidget">
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/TeXmacs_intro.html">学术文章写作利器: TeXmacs介绍</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/hashcode2014-solved-by-LP.html">运筹的力量: 用线性规划解决Google 2014 HashCode问题</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%85%A5%E9%97%A8%E7%AE%80%E4%BB%8B.html">正则表达式入门简介</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/%E6%88%91%E7%9A%84ubuntu10.04%E9%85%8D%E7%BD%AE%E6%80%BB%E7%BB%93.html">我的ubuntu10.04配置总结</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/PT-summery.html">2011巴黎高科(ParisTech)申请总结</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/GT-summery.html">用尽量少的时间考一个够用的分数--一点Tofel/GRE备考经验</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/pelican_github_blog.html">用pelican在github上创建自己的博客!</a><br></li>
</div>
<br><a href="https://www.polytechnique.edu/" target="_blank">
<img src="https://x-wei.github.io/images/x-logo.png" alt="X" width="180" border="0" />
</a><br/>
<br><a href="https://www.sjtu.edu.cn/">
<img src="https://x-wei.github.io/images/ssss.jpg" width="180" border="0" alt="上海西南某高校">
</a><br/>
<br>
<h4 class="widget-title">Visitors</h4>
<script type="text/javascript" src="//rf.revolvermaps.com/0/0/1.js?i=59olkba9w7e&s=220&m=3&v=true&r=false&b=000000&n=false&c=ff0000" async="async"></script>
<!-- hitwebcounter Code START -->
<a href="https://www.hitwebcounter.com/how-to/how-to-what-is-free-blog-counter.php" target="_blank">
<img src="https://hitwebcounter.com/counter/counter.php?page=5954927&style=0036&nbdigits=5&type=ip&initCount=0" title="web counter" Alt="web counter" border="0" ></a>
<br/>
</div>
</div>
</div>
<div class="sidebar-item ">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<a href="https://x-wei.github.io/tags.html"><i class="fa fa-tags fa-lg"></i><span class="icon-label">标签云</span></a>
</h4>
</div>
<div class="panel-body">
<ul class="list-group list-inline tagcloud" id="tags">
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/pelican.html">
pelican <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/google.html">
google <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/torch.html">
torch <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/tex.html">
tex <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/ba-li-gao-ke.html">
巴黎高科 <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/markdown.html">
markdown <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/linux.html">
linux <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/inf422.html">
inf422 <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/toefl.html">
Toefl <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/regex.html">
regex <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/git.html">
git <sup> 5</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/weka.html">
weka <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/scala.html">
scala <sup> 12</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/opencv.html">
opencv <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/scrapy.html">
scrapy <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/gre.html">
GRE <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/lp.html">
LP <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/android.html">
android <sup> 9</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/pandas.html">
pandas <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/codejam.html">
codejam <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/fr.html">
fr <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/shell.html">
shell <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/python.html">
python <sup> 13</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/simongarfunkel.html">
Simon&Garfunkel <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/french.html">
french <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/wai-guan.html">
外观 <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/zhong-wen-luan-ma.html">
中文乱码 <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/host.html">
host <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/ssh.html">
ssh <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/ubuntu.html">
ubuntu <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/java.html">
java <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/spark.html">
spark <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/tips.html">
tips <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/deep-learning.html">
deep learning <sup> 28</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/c.html">
C++ <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/algorithm.html">
algorithm <sup> 35</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/texmacs.html">
TeXmacs <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/ml.html">
ml <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/eclipse.html">
eclipse <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/ocaml.html">
OCaml <sup> 8</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/r.html">
R <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/chu-guo.html">
出国 <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/kuai-jie-jian.html">
快捷键 <sup> 3</sup>
</a>
</li>
</ul>
</div>
</div>
</div>
<li class="list-group-item"><h4><i class="fa fa-tags fa-list-ul"></i><span class="icon-label">Series</span></h4>
<ul class="list-group">
<li class="list-group-item">
<h5></i> Previous article</h5>
<a href="https://x-wei.github.io/Rnotes-3-plot.html">R语言从入门到放弃 (3). 绘图</a>
</li>
<li class="list-group-item">
</li>
</ul>
</li>
<div class="sidebar-item hidden-xs">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<i class="fa fa-github fa-lg"></i><span class="icon-label">GitHub仓库</span>
</h4>
</div>
<div class="panel-body">
<div id="gh_repos">
<p class="list-group-item">Status updating...</p>
</div>
<a href="https://github.com/x-wei">@x-wei</a> on GitHub
</div>
</div>
</div>
</div>
</section>
<div class="panel panel-default hidden-xs hidden-sm" id="affix-toc">
<div class="panel-heading"><h4>
目录</h4>
</div>
<div class="panel-boy">
<div id="toc"><ul><li><a class="toc-href" href="#theory" title="Theory">Theory</a><ul><li><a class="toc-href" href="#linear-model" title="linear model">linear model</a></li><li><a class="toc-href" href="#nadaraya-watson-kernel-smoother" title="Nadaraya-Watson kernel smoother">Nadaraya-Watson kernel smoother</a></li><li><a class="toc-href" href="#local-polynomial-smoother" title="Local Polynomial smoother">Local Polynomial smoother</a></li><li><a class="toc-href" href="#smoothing-spline" title="Smoothing Spline">Smoothing Spline</a></li></ul></li><li><a class="toc-href" href="#fit-model_1" title="fit model">fit model</a><ul><li><a class="toc-href" href="#formula" title="formula">formula</a></li><li><a class="toc-href" href="#fit-models" title="fit models">fit models</a></li></ul></li><li><a class="toc-href" href="#predict-fittedresiduals_1" title="predict, fitted/residuals">predict, fitted/residuals</a></li><li><a class="toc-href" href="#bandwidthdf-hat-matrix" title="bandwidth&df: Hat Matrix">bandwidth&df;: Hat Matrix</a></li><li><a class="toc-href" href="#cv-and-hat-matrix" title="CV and Hat Matrix">CV and Hat Matrix</a></li></ul></div>
</div>
</div>
</aside>
</div>
</div>
</div>
<footer id="fcfooter">
<hr/>
<div class="container">
links :
<a href="https://farseerfc.github.com/">farseerfc</a>
<a href="https://hyhx2008.github.com/">H.Y.</a>
<a href="https://reginald1787.github.io/">reginald1787</a>
<a href="https://log.dofine.me/">dofine</a>
<div class="row">
<div class="col-md-14">
<p><small>
© 2020 mx
· 通过
<a href="https://docs.getpelican.com/" target="_blank">Pelican</a> 生成 <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="//i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a>
<!-- Content -->
<!-- licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution 4.0 International License</a>, except where indicated otherwise. -->
</small></p>
</div>
</div>
</div>
<a href="#" class="btn btn-primary btn-fab btn-raised mdi-editor-vertical-align-top withripple" style="position:fixed;bottom:30px;right:30px;z-index:1000"></a>
</footer>
<script src="https://x-wei.github.io/theme/js/jquery.min.js"></script>
<!-- Include all compiled plugins (below), or include individual files as needed -->
<script src="https://x-wei.github.io/theme/js/bootstrap.min.js"></script>
<!-- Enable responsive features in IE8 with Respond.js (https://github.com/scottjehl/Respond) -->
<script src="https://x-wei.github.io/theme/js/respond.min.js"></script>
<!-- GitHub JS -->
<script type="text/javascript">
$(document).ready(function () {
if (!window.jXHR) {
var jxhr = document.createElement('script');
jxhr.type = 'text/javascript';
jxhr.src = 'https://x-wei.github.io/theme/js/jXHR.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(jxhr, s);
}
github.showRepos({
user: 'x-wei',
count: 5,
skip_forks: false,
target: '#gh_repos'
});
});
</script>
<script src="https://x-wei.github.io/theme/js/github.js" type="text/javascript"></script>
<!-- End GitHub JS Code -->
<!-- Disqus -->
<script type="text/javascript">
/* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
var disqus_shortname = 'xweisblog'; // required: replace example with your forum shortname
/* * * DON'T EDIT BELOW THIS LINE * * */
(function () {
var s = document.createElement('script');
s.async = true;
s.type = 'text/javascript';
s.src = '//' + disqus_shortname + '.disqus.com/count.js';
(document.getElementsByTagName('HEAD')[0] || document.getElementsByTagName('BODY')[0]).appendChild(s);
}());
</script>
<!-- End Disqus Code -->
<!-- Google Analytics -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-30756331-1']);
_gaq.push(['_trackPageview']);
(function () {
var ga = document.createElement('script');
ga.type = 'text/javascript';
ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(ga, s);
})();
</script>
<!-- End Google Analytics Code -->
<script src="https://x-wei.github.io/theme/js/ripples.min.js"></script>
<script src="https://x-wei.github.io/theme/js/material.min.js"></script>
<script src="https://x-wei.github.io/theme/js/jquery.bootstrap-autohidingnavbar.min.js"></script>
<script>
$(document).ready(function() {
$.material.init();
$("div.navbar").autoHidingNavbar();
$(".img-responsive").css("cursor","pointer").on('click',function(){
var sr=$(this).attr('src');
$('#mimg').attr('src',sr);
$('#myModal').modal('show');
});
$('#affix-toc').affix({
offset: {
top: function(){
if($('#affix-toc').hasClass("affix"))
return $('#sidebar').height();
return $('#sidebar').height() - $('#affix-toc').height();
},
bottom: function (){
return $("#fcfooter").offset().top -
$("#article-content").offset().top -
$("#article-content").height() + 20;
}
}
});
$('#affix-toc').width($('#sidebar').width());
});
$(window).resize(function () {
$('#affix-toc').width($('#sidebar').width());
});
</script>
</body>
</html>