-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbase_agent.py
55 lines (40 loc) · 1.48 KB
/
base_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
# base_agent.py
from gym_2048 import Game2048Env
import random
class BaseAgent():
def act(self, state):
raise NotImplementedError
class RandomAgent(BaseAgent):
def act(self, state):
return random.randint(0, 3)
if __name__ == "__main__":
import time
import numpy as np
def run(ifrender=False):
agent = RandomAgent()
env = Game2048Env()
state, reward, done, info = env.reset()
if ifrender:
env.render()
start = time.time()
while True:
action = agent.act(state)
# print('action: {}'.format(action))
state, reward, done, info = env.step(action)
if ifrender:
env.render()
if done:
print('\nfinished, info:{}'.format(info))
break
end = time.time()
# print('episode time:{} s\n'.format(end - start))
return end - start, info['highest'], info['score'], info['steps']
time_lis, highest_lis, score_lis, steps_lis = [], [], [], []
for i in range(1000):
t, highest, score, steps = run()
time_lis.append(t)
highest_lis.append(highest)
score_lis.append(score)
steps_lis.append(steps)
print('eval result:\naverage episode time:{} s, average highest score:{}, average total score:{}, average steps:{}'.format(np.mean(time_lis), np.mean(highest_lis), np.mean(score_lis), np.mean(steps_lis)))