-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain.py
90 lines (63 loc) · 2.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['USE_SIMPLE_THREADED_LEVEL3'] = '1'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import sys
import logging
from model.stylegan import StyleGAN_G_synthesis
from model.model import Network
from data_loader.data_loader import DataLoader
from writer import Writer
from trainer import Trainer
from arglib import arglib
from utils import general_utils as utils
sys.path.insert(0, 'model/face_utils')
def init_logger(args):
root_logger = logging.getLogger()
level = logging.DEBUG if args.log_debug else logging.INFO
root_logger.setLevel(level)
file_handler = logging.FileHandler(f'{args.results_dir}/log.txt')
console_handler = logging.StreamHandler()
datefmt = '%Y-%m-%d %H:%M:%S'
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt)
file_handler.setLevel(level)
console_handler.setLevel(level)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
root_logger.addHandler(file_handler)
root_logger.addHandler(console_handler)
pil_logger = logging.getLogger('PIL.PngImagePlugin')
pil_logger.setLevel(logging.INFO)
def main():
train_args = arglib.TrainArgs()
args, str_args = train_args.args, train_args.str_args
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
init_logger(args)
logger = logging.getLogger('main')
cmd_line = ' '.join(sys.argv)
logger.info(f'cmd line is: \n {cmd_line}')
logger.info(str_args)
logger.debug('Copying src to results dir')
Writer.set_writer(args.results_dir)
if not args.debug:
description = input('Please write a short description of this run\n')
desc_file = args.results_dir.joinpath('description.txt')
with desc_file.open('w') as f:
f.write(description)
id_model_path = args.pretrained_models_path.joinpath('vggface2.h5')
stylegan_G_synthesis_path = str(
args.pretrained_models_path.joinpath(f'stylegan_G_{args.resolution}x{args.resolution}_synthesis'))
landmarks_model_path = str(args.pretrained_models_path.joinpath('face_utils/keypoints'))
face_detection_model_path = str(args.pretrained_models_path.joinpath('face_utils/detector'))
arcface_model_path = str(args.pretrained_models_path.joinpath('arcface_weights/weights-b'))
utils.landmarks_model_path = str(args.pretrained_models_path.joinpath('shape_predictor_68_face_landmarks.dat'))
stylegan_G_synthesis = StyleGAN_G_synthesis(resolution=args.resolution, is_const_noise=args.const_noise)
stylegan_G_synthesis.load_weights(stylegan_G_synthesis_path)
network = Network(args, id_model_path, stylegan_G_synthesis, landmarks_model_path,
face_detection_model_path, arcface_model_path)
data_loader = DataLoader(args)
trainer = Trainer(args, network, data_loader)
trainer.train()
if __name__ == '__main__':
main()