-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathYOLO_WORLD_EfficientSAM.py
211 lines (175 loc) · 7.86 KB
/
YOLO_WORLD_EfficientSAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import List
import folder_paths
import os
import cv2
import numpy as np
import supervision as sv
import torch
from tqdm import tqdm
from inference.models import YOLOWorld
from .utils.efficient_sam import load, inference_with_boxes
from .utils.video import generate_file_name, calculate_end_frame_index, create_directory
current_directory = os.path.dirname(os.path.abspath(__file__))
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
folder_paths.folder_names_and_paths["yolo_world"] = ([os.path.join(folder_paths.models_dir, "yolo_world")], folder_paths.supported_pt_extensions)
def process_categories(categories: str) -> List[str]:
return [category.strip() for category in categories.split(',')]
def annotate_image(
input_image: np.ndarray,
detections: sv.Detections,
categories: List[str],
with_confidence: bool = False,
thickness: int = 2,
text_thickness: int = 2,
text_scale: float = 1.0,
) -> np.ndarray:
labels = [
(
f"{categories[class_id]}: {confidence:.3f}"
if with_confidence
else f"{categories[class_id]}"
)
for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=thickness)
LABEL_ANNOTATOR = sv.LabelAnnotator(text_thickness=text_thickness, text_scale=text_scale)
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
class Yoloworld_ModelLoader_Zho:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"yolo_world_model": (["yolo_world/l", "yolo_world/m", "yolo_world/s"], ),
}
}
RETURN_TYPES = ("YOLOWORLDMODEL",)
RETURN_NAMES = ("yolo_world_model",)
FUNCTION = "load_yolo_world_model"
CATEGORY = "🔎YOLOWORLD_ESAM"
def load_yolo_world_model(self, yolo_world_model):
YOLO_WORLD_MODEL = YOLOWorld(model_id=yolo_world_model)
return [YOLO_WORLD_MODEL]
class ESAM_ModelLoader_Zho:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device": (["CUDA", "CPU"], ),
}
}
RETURN_TYPES = ("ESAMMODEL",)
RETURN_NAMES = ("esam_model",)
FUNCTION = "load_esam_model"
CATEGORY = "🔎YOLOWORLD_ESAM"
def load_esam_model(self, device):
if device == "CUDA":
model_path = os.path.join(current_directory, "efficient_sam_s_gpu.jit")
else:
model_path = os.path.join(current_directory, "efficient_sam_s_cpu.jit")
EFFICIENT_SAM_MODEL = torch.jit.load(model_path)
return [EFFICIENT_SAM_MODEL]
class Yoloworld_ESAM_Zho:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"yolo_world_model": ("YOLOWORLDMODEL",),
"esam_model": ("ESAMMODEL",),
"image": ("IMAGE",),
"categories": ("STRING", {"default": "person, bicycle, car, motorcycle, airplane, bus, train, truck, boat", "multiline": True}),
"confidence_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step":0.01}),
"iou_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step":0.01}),
"box_thickness": ("INT", {"default": 2, "min": 1, "max": 5}),
"text_thickness": ("INT", {"default": 2, "min": 1, "max": 5}),
"text_scale": ("FLOAT", {"default": 1.0, "min": 0, "max": 1, "step":0.01}),
"with_confidence": ("BOOLEAN", {"default": True}),
"with_class_agnostic_nms": ("BOOLEAN", {"default": False}),
"with_segmentation": ("BOOLEAN", {"default": True}),
"mask_combined": ("BOOLEAN", {"default": True}),
"mask_extracted": ("BOOLEAN", {"default": True}),
"mask_extracted_index": ("INT", {"default": 0, "min": 0, "max": 1000}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", )
FUNCTION = "yoloworld_esam_image"
CATEGORY = "🔎YOLOWORLD_ESAM"
def yoloworld_esam_image(self, image, yolo_world_model, esam_model, categories, confidence_threshold, iou_threshold, box_thickness, text_thickness, text_scale, with_segmentation, mask_combined, with_confidence, with_class_agnostic_nms, mask_extracted, mask_extracted_index):
categories = process_categories(categories)
processed_images = []
processed_masks = []
for img in image:
img = np.clip(255. * img.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
YOLO_WORLD_MODEL = yolo_world_model
YOLO_WORLD_MODEL.set_classes(categories)
results = YOLO_WORLD_MODEL.infer(img, confidence=confidence_threshold)
detections = sv.Detections.from_inference(results)
detections = detections.with_nms(
class_agnostic=with_class_agnostic_nms,
threshold=iou_threshold
)
combined_mask = None
if with_segmentation:
detections.mask = inference_with_boxes(
image=img,
xyxy=detections.xyxy,
model=esam_model,
device=DEVICE
)
if mask_combined:
combined_mask = np.zeros(img.shape[:2], dtype=np.uint8)
det_mask = detections.mask
for mask in det_mask:
combined_mask = np.logical_or(combined_mask, mask).astype(np.uint8)
masks_tensor = torch.tensor(combined_mask, dtype=torch.float32)
processed_masks.append(masks_tensor)
else:
det_mask = detections.mask
if mask_extracted:
mask_index = mask_extracted_index
selected_mask = det_mask[mask_index]
masks_tensor = torch.tensor(selected_mask, dtype=torch.float32)
else:
masks_tensor = torch.tensor(det_mask, dtype=torch.float32)
processed_masks.append(masks_tensor)
output_image = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
output_image = annotate_image(
input_image=output_image,
detections=detections,
categories=categories,
with_confidence=with_confidence,
thickness=box_thickness,
text_thickness=text_thickness,
text_scale=text_scale,
)
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
output_image = torch.from_numpy(output_image.astype(np.float32) / 255.0).unsqueeze(0)
processed_images.append(output_image)
new_ims = torch.cat(processed_images, dim=0)
if processed_masks:
new_masks = torch.stack(processed_masks, dim=0)
else:
new_masks = torch.empty(0)
return new_ims, new_masks
NODE_CLASS_MAPPINGS = {
"Yoloworld_ModelLoader_Zho": Yoloworld_ModelLoader_Zho,
"ESAM_ModelLoader_Zho": ESAM_ModelLoader_Zho,
"Yoloworld_ESAM_Zho": Yoloworld_ESAM_Zho,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Yoloworld_ModelLoader_Zho": "🔎Yoloworld Model Loader",
"ESAM_ModelLoader_Zho": "🔎ESAM Model Loader",
"Yoloworld_ESAM_Zho": "🔎Yoloworld ESAM",
}