-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
364 lines (322 loc) · 17.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
<!DOCTYPE html>
<html>
<head>
<title>FISOR</title>
<style>
.hidden {
display: none;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<meta charset="utf-8">
<meta name="description"
content="Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model">
<meta name="keywords" content="FISOR, Safety, Reinforcement Learning, Diffusion Model, Safe Offline Reinforcement Learning, Offline Reinforcement Learning, AI">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title> Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model</title>
<link rel="icon" href="./assets/icon.png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./assets/css/bulma.min.css">
<link rel="stylesheet" href="./assets/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./assets/css/bulma-slider.min.css">
<link rel="stylesheet" href="./assets/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<script defer src="./assets/js/fontawesome.all.min.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://github.com/ZhengYinan-AIR/OMIGA">
<b>OMIGA: Offline Multi-agent RL (NeurIPS 2023)</b> <p style="font-size:18px; display: inline; margin-left: 5px;"></p>
</a>
<a class="navbar-item" href="https://2toinf.github.io/DecisionNCE/">
<b>DecisionNCE: Representation Pretrain for Robotics</b> <p style="font-size:18px; display: inline; margin-left: 5px;"></p>
</a>
</a>
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title is-bold">
<img src="./assets/icon.png" style="width:1em;vertical-align: middle" alt="Logo"/>
<span class="mmmu" style="vertical-align: middle">FISOR</span>
</h1>
<h2 class="subtitle is-3 publication-subtitle">
Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model
<!-- <br>
and Reasoning Benchmark for Expert AGI -->
</h2>
<div class="is-size-5 publication-authors">
<span class="author-block">Yinan Zheng*<sup style="color:#007bff;">†,1,2</sup>,</span>
<span class="author-block">Jianxiong Li*<sup style="color:#007bff;">1,2</sup>,</span>
<span class="author-block">Dongjie Yu<sup style="color:#ed4b82;">3</sup>,</span>
<span class="author-block">Yujie Yang<sup style="color:#6fbf73;">2</sup>,</span><br>
<span class="author-block">Shengbo Eben Li<sup style="color:#6fbf73;">2</sup>,</span>
<span class="author-block">Xianyuan Zhan<sup style="color:#ffac33;">✉,1,4</sup>,</span>
<span class="author-block">Jingjing Liu<sup style="color:#007bff;">✉,1,2</sup>,</span>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup style="color:#007bff;">1</sup>Institute for AI Industry Research (AIR), Tsinghua University</span><br>
<span class="author-block"><sup style="color:#6fbf73;">2</sup>School of Vehicle and Mobility, Tsinghua University</span><br>
<span class="author-block"><sup style="color:#ed4b82;">3</sup>Department of Computer Science, The University of Hong Kong</span><br>
<span class="author-block"><sup style="color:#ffac33;">4</sup>Shanghai Artificial Intelligence Laboratory</span></br>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block">*Equal contribution, ✉Corresponding author</span><br>
<span class="author-block">†Project Lead:</span>
<span class="author-block"><a href="mailto:[email protected]">[email protected]</a></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2401.10700.pdf"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Arxiv</span>
</a>
</span>
<span class="link-block">
<a href="https://openreview.net/forum?id=j5JvZCaDM0"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Openreview</span>
</a>
</span>
<span class="link-block">
<!-- @TODO: change links -->
<a href="https://cloud.tsinghua.edu.cn/d/0d2939f7f7234cf68f1d/"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<p style="font-size:18px">🔗</p>
<!-- 🔗 -->
</span>
<span>Dataset</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/ZhengYinan-AIR/FISOR"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<style>
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 80%;
}
</style>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="content has-text-centered">
<img src="./assets/framework.jpg" alt="geometric reasoning" width="100%"/>
</div>
</div>
</section>
<section class="section">
<div class="container" style="margin-bottom: 2vh;">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">🔔News</h2>
<div class="content has-text-justified">
<p>
<b>🔥[2024-01-16]: Our paper <a href="https://openreview.net/forum?id=j5JvZCaDM0">Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model</a> has been accepted by ICLR 2024.</b>
<!-- <b>[2023-11-27]: Our evaluation server for the test set is now available on <a href="https://eval.ai/web/challenges/challenge-page/2179/overview">EvalAI</a>. We welcome all submissions and look forward to your participation! 😆</b> -->
</p>
</div>
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p><strong>
How can we train a diffusion policy to satisfy hard constraints using only supervised objectives, without employing iterative Lagrangian-based methods?
</strong>
</p>
<p>
Safe offline reinforcement learning is a promising way to bypass risky online interactions towards safe policy learning. Most existing methods only enforce soft constraints, i.e., constraining safety violations in expectation below thresholds predetermined. This can lead to potentially unsafe outcomes, thus unacceptable in safety-critical scenarios.
An alternative is to enforce the hard constraint of zero violation. However, this can be challenging in offline setting, as it needs to strike the right balance among three highly intricate and correlated aspects: safety constraint satisfaction, reward maximization, and behavior regularization imposed by offline datasets.
Interestingly, we discover that via reachability analysis of safe-control theory, the hard safety constraint can be equivalently translated to identifying the largest feasible region given the offline dataset. This seamlessly converts the original trilogy problem to a feasibility-dependent objective, i.e., maximizing reward value within the feasible region while minimizing safety risks in the infeasible region. Inspired by these, we propose FISOR (FeasIbility-guided Safe Offline RL), which allows safety constraint adherence, reward maximization, and offline policy learning to be realized via three decoupled processes, while offering strong safety performance and stability. In FISOR, the optimal policy for the translated optimization problem can be derived in a special form of weighted behavior cloning, which can be effectively extracted with a guided diffusion model thanks to its expressiveness. Moreover, we propose a novel energy-guided sampling method that does not require training a complicated time-dependent classifier to simplify the training.
We compare FISOR against baselines on DSRL benchmark for safe offline RL. Evaluation results show that FISOR is the only method that can guarantee safety satisfaction in all tasks, while achieving top returns in most tasks.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<!-- Methods SECTION -->
<section class="hero is-light is-small">
<div class="hero-body has-text-centered">
<h1 class="title is-1 mmmu">Methods</h1>
</div>
</section>
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Offline Identification of Feasibility</h2>
<div class="content has-text-justified">
<p>
We can predetermine the approximately largest feasible region using offline datasets, <b>without the need to train a policy</b>. Compared to the commonly used cost state-value function, our approach yields a lower approximation error.
</p>
<div class="content has-text-centered">
<img src="./assets/qh.jpg" alt="algebraic reasoning" class="center">
<p><b><i>Figure 1:</i></b> (a) Reach-avoid control task: the agent (red) aim to reach the goal (green) while avoiding hazards (blue). (b) Offline data distribution. (c)-(e) Comparisons with the feasible region learned by feasible value
{s|V*_h(s)<=0} and cost value {s|V*_c(s)<=1e-3}.</p>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Feasibility-Guided Diffusion Model</h2>
<div class="content has-text-justified">
<p>
We propose a feasibility-dependent objective, i.e.,
<b>maximizing reward value within the feasible region while minimizing safety risks in the infeasible region</b>.
In FISOR, the optimal policy for the optimization problem can be derived in a special form of weighted behavior cloning.
Moreover, we propose a novel energy-guided sampling method that <b>does not require training a complicated time-dependent classifier</b> to simplify the training. <b>No more Lagrangian.</b>
</p>
<div class="content has-text-centered">
<img src="./assets/framework.jpg" alt="algebraic reasoning" class="center">
<p><b><i>Figure 2:</i></b> Feasibility-guided diffusion model with time-independent classifier-guided sampling method.</p>
</div>
</div>
</div>
</div>
</section>
<!-- RESULTS SECTION -->
<section class="hero is-light is-small">
<div class="hero-body has-text-centered">
<h1 class="title is-1 mmmu">Experiment Results</h1>
</div>
</section>
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Main Results</h2>
<div class="content has-text-centered">
<img src="./assets/mainresult.jpg" alt="algebraic reasoning" class="center">
<p><b><i>Table 1:</i></b> Normalized <a href="https://github.com/liuzuxin/DSRL">DSRL</a> benchmark results. Each value is averaged over 20 evaluation episodes and 3 seeds. <span style="color: #0000FF;">Blue</span>: Safe agents with the highest reward. <span style="color: #656565;">Gray</span>: Unsafe agents. <b>Bold</b>: safe agents whose normalized cost is smaller than 1.</p>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Soft Constraint Under Different Cost Limits</h2>
<div class="content has-text-justified">
<p>
We evaluate the sensitivity of cost limit selection for soft-constraint-based methods to demonstrate the effectiveness of hard constraint.
Results shows that most soft-constraint-based methods are highly sensitive to the value of cost limit. In some cases, choosing a small cost limit even leads to an increase in the final cost. ]
This shows that it is difficult for these methods to select the right cost limit to achieve the best performance, which requires task-specific tuning.
In contrast, our algorithm, which considers hard constraints, does not encounter this issue and achieves superior results <b>using only one group of hyperparameters</b>.
</p>
<div class="content has-text-centered">
<img src="./assets/cost_limit.jpg" alt="algebraic reasoning" class="center">
<p><b><i>Figure 3:</i></b> Soft constraint sensitivity experiments for cost limit. </p>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Data Quantity Sensitivity Experiment</h2>
<div class="content has-text-justified">
<p>
We select some competitive baselines that achieve relatively good safety and reward performances in Table 1 and train them with 1/2 and 1/10 of the data volume.
FISOR still meets safety requirements and demonstrates more stable performance compared to other methods, although a reduction in data volume weakens FISOR's safety a little.
We believe FISOR enjoys such good stability as it decouples the intricate training processes of safe offline RL, which greatly enhances training performances.
</p>
<div class="content has-text-centered">
<img src="./assets/datavolum.jpg" alt="algebraic reasoning" class="center">
<p><b><i>Figure 4:</i></b> Data quantity sensitivity experiment results. </p>
</div>
</div>
</div>
</div>
</section>
<!-- @PAN TODO: bibtex -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title is-3 has-text-centered">BibTeX</h2>
<pre><code>
@inproceedings{
zheng2024safe,
title={Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model},
author={Yinan Zheng and Jianxiong Li and Dongjie Yu and Yujie Yang and Shengbo Eben Li and Xianyuan Zhan and Jingjing Liu},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=j5JvZCaDM0}
}
</code></pre>
</div>
</section>
<footer class="footer">
<!-- <div class="container"> -->
<div class="content has-text-centered">
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content has-text-centered">
<p>
This website is website adapted from <a href="https://mmmu-benchmark.github.io/">MMMU</a>, licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
<!-- </div> -->
</footer>
</body>