-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
106 lines (81 loc) · 2.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import json
import numpy as np
from nltk_utils import tokenize, stem, bag_of_words
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from model import NeuralNet
with open('intents.json', 'r') as f:
intents = json.load(f)
ignore_words = ['.', ',', '!', '?']
all_words = set()
tags = set()
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.add(tag)
for pattern in intent['patterns']:
tokens = tokenize(pattern)
for word in [stem(w) for w in tokens if w not in ignore_words]:
all_words.add(word)
xy.append((tokens, tag))
all_words = sorted(all_words)
tags = sorted(tags)
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
bag = bag_of_words(pattern_sentence, all_words)
X_train.append(bag)
label = tags.index(tag)
y_train.append(label)
X_train = np.array(X_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.n_samples
# Hyperparameters
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(all_words)
learning_rate = 0.001
num_epochs = 1000
#################
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# forward
outputs = model(words)
loss = criterion(outputs, labels)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f"Epoch {epoch+1}/{num_epochs}, loss={loss.item():.4f}")
print(f"Final loss={loss.item():.4f}")
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"all_words": all_words,
"tags": tags
}
FILE = "data.pth"
torch.save(data, FILE)
print(f"Training complete. File saved to {FILE}")