-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathmain.py
110 lines (87 loc) · 3.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
@author: Mahmoud I.Zidan
"""
import numpy as np
import os.path
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
import time
import argparse
from sort import Sort
from detector import GroundTruthDetections
def main():
args = parse_args()
display = args.display
use_dlibTracker = args.use_dlibTracker
saver = args.saver
total_time = 0.0
total_frames = 0
# for disp
if display:
colours = np.random.rand(32, 3) # used only for display
plt.ion()
fig = plt.figure()
if not os.path.exists('output'):
os.makedirs('output')
out_file = 'output/townCentreOut.top'
#init detector
detector = GroundTruthDetections()
#init tracker
tracker = Sort(use_dlib= use_dlibTracker) #create instance of the SORT tracker
if use_dlibTracker:
print "Dlib Correlation tracker activated!"
else:
print "Kalman tracker activated!"
with open(out_file, 'w') as f_out:
frames = detector.get_total_frames()
for frame in range(0, frames): #frame numbers begin at 0!
# get detections
detections = detector.get_detected_items(frame)
total_frames +=1
fn = 'test/Pictures%d.jpg' % (frame + 1) # video frames are extracted to 'test/Pictures%d.jpg' with ffmpeg
img = io.imread(fn)
if (display):
ax1 = fig.add_subplot(111, aspect='equal')
ax1.imshow(img)
if(use_dlibTracker):
plt.title('Dlib Correlation Tracker')
else:
plt.title('Kalman Tracker')
start_time = time.time()
#update tracker
trackers = tracker.update(detections,img)
cycle_time = time.time() - start_time
total_time += cycle_time
print('frame: %d...took: %3fs'%(frame,cycle_time))
for d in trackers:
f_out.write('%d,%d,%d,%d,x,x,x,x,%.3f,%.3f,%.3f,%.3f\n' % (d[4], frame, 1, 1, d[0], d[1], d[2], d[3]))
if (display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0], d[1]), d[2] - d[0], d[3] - d[1], fill=False, lw=3,
ec=colours[d[4] % 32, :]))
ax1.set_adjustable('box-forced')
#label
ax1.annotate('id = %d' % (d[4]), xy=(d[0], d[1]), xytext=(d[0], d[1]))
if detections != []:#detector is active in this frame
ax1.annotate(" DETECTOR", xy=(5, 45), xytext=(5, 45))
if (display):
plt.axis('off')
fig.canvas.flush_events()
plt.draw()
fig.tight_layout()
#save the frame with tracking boxes
if(saver):
fig.savefig("./frameOut/f%d.jpg"%(frame+1),dpi = 200)
ax1.cla()
print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Experimenting Trackers with SORT')
parser.add_argument('--NoDisplay', dest='display', help='Disables online display of tracker output (slow)',action='store_false')
parser.add_argument('--dlib', dest='use_dlibTracker', help='Use dlib correlation tracker instead of kalman tracker',action='store_true')
parser.add_argument('--save', dest='saver', help='Saves frames with tracking output, not used if --NoDisplay',action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
main()